单选题古希腊的三大闻名几何尺规作图问题是().①三等分角②立方倍积③正十七边形④化圆为方A①②③B①②④C①③④D②③④

单选题
古希腊的三大闻名几何尺规作图问题是().①三等分角②立方倍积③正十七边形④化圆为方
A

①②③

B

①②④

C

①③④

D

②③④


参考解析

解析: 暂无解析

相关考题:

古希腊三大著名几何问题是化圆为方、倍立方体和三等分角。() 此题为判断题(对,错)。

下列选项中,不属于古希腊著名几何问题的是()。 A.化圆为方B.求三角形面积C.三等分角D.倍立方体

高斯被称为数学王子,他在19岁时就做解决了一个重要的作图问题,这个问题是使用尺规解决了立方倍积问题。() 此题为判断题(对,错)。

高斯被称为数学王子,他在19岁时就做解决了一个重要的作图问题,这个问题是:() A.使用尺规进行三等分角B.使用尺规解决了立方倍积问题C.使用尺规解决了化圆成方问题D.使用尺规做出了正十七边形

三等分角问题、倍方问题和化圆为方问题被称为古希腊的三大几何作图问题。() 此题为判断题(对,错)。

古希腊的几何三大问题是(1)化圆为方(2)倍立方体(3)三等分任意角。()

古典几何三大尺规作图问题是()?A.三等分任意角B.化圆为方C.正多边形D.倍立方体

古希腊的三大著名几何尺规作图问题是()。①三等分角②立方倍积③正十七边形④化圆为方A.①②③B.①②④C.①③④D.②③④

古希腊的三大闻名几何尺规作图问题是()。①三等分角②立方倍积③正十七逸形④化圆为方A.①②③B.①②④C.①③③D.②③④。

高斯用尺规作图绘出了正17边形,为欧几里得几何提供了重要的补充。

古希腊三大著名几何问题是化圆为方、倍立方体和()。

高斯被称为数学王子,他在19岁时就做解决了一个重要的作图问题,这个问题是:()。A、使用尺规进行三等分角B、使用尺规解决了立方倍积问题C、使用尺规解决了化圆成方问题D、使用尺规做出了正十七边形

希波克拉底定理的弓月形使古希腊人以为()解决了。A、化圆为方B、三等分角C、倍立方问题D、阿基米德猜想

古希腊著名的三大尺规作图问题分别是:化圆为方、倍立方体、()

古希腊的三大著名几何问题是()、()和三等分角。

数学史上的三大作图难题不包括下面哪一项?()A、三等分角B、化圆为方C、立方倍积D、正十七边形

古希腊的三大闻名几何尺规作图问题是().①三等分角②立方倍积③正十七边形④化圆为方A、①②③B、①②④C、①③④D、②③④

三等分一个角、化圆为方、立方倍积三个数学作图问题,除了化圆为方是不可能的,其余两个都是可以成立的。()

填空题古希腊著名的三大尺规作图问题分别是:化圆为方、倍立方体、()

单选题数学史上的三大作图难题不包括下面哪一项?()A三等分角B化圆为方C立方倍积D正十七边形

填空题古希腊的三大著名几何问题是()、()和三等分角。

判断题三等分一个角、化圆为方、立方倍积三个数学作图问题,除了化圆为方是不可能的,其余两个都是可以成立的。()A对B错

单选题文艺复兴和启蒙运动大大的推动着欧洲自然科学的发展。17世纪以前,几何和代数自立门户,各自独立发展.随着生产实践的进步,人们愈来愈多地考察研究运动着的物体,时代要求几何和代数“联姻”——解析几何诞生了。许多几何问题都可以转化为代数问题来研究。试问下列哪项不属于几何学上的三大尺规作图?()A化圆为方B三等分角C立方倍积D地图着色

填空题古希腊三大著名几何问题是化圆为方、倍立方体和()。

判断题高斯用尺规作图绘出了正17边形,为欧几里得几何提供了重要的补充。A对B错

单选题希波克拉底定理的弓月形使古希腊人以为()解决了。A化圆为方B三等分角C倍立方问题D阿基米德猜想

单选题哪种正多边形可以尺规作图?()A正五边形B正十七边形