填空题设某地区高考成绩服从平均数为550,标准差为100的正态分布,随机抽取50人,以95.45%的概率保证程度估计该地区高考平均分数的区间在()分
填空题
设某地区高考成绩服从平均数为550,标准差为100的正态分布,随机抽取50人,以95.45%的概率保证程度估计该地区高考平均分数的区间在()分
参考解析
解析:
暂无解析
相关考题:
某地区居民户数为10000户,其平均月消费水平标准差为100元。采取简单随机重复抽样抽取样本进行调查,以了解其月平均消费水平,若可靠程为95.45%,误差不超过10元,则应抽取()户居民进行调查。
某地区居民户数为10000户,其平均月消费水平标准差为100元。采取简单随机重复抽样抽取样本进行调查,以了解其月平均消费水平,若可靠程序为95.45%,误差不超过10元,则应抽取()户居民进行调查。 A、100户B、200户C、400户D、1000户
设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平为0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程. 附表:t分布表
已知某次高考的数学成绩服从正态分布,从这个总体中随即抽取n=37的样本,并计算得其平均分为79分,标准差为9分。那么下列成绩不在这次考试中全体考生成绩均值μ的0.95置信区间之内的是( )A.77B.80C.81D.85
从某年级学生中按简单随机抽样方式抽取40名学生,对统计学原理课的考试成绩进行检查,得知其平均分数为78.75分,样本标准差为12.13分,试以95.45%的概率保证程度推断全年级学生考试成绩的区间范围。如果其它条件不变,将允许误差缩小一半,应抽取多少名学生?
对某厂日产10000个灯泡的使用寿命进行抽样调查,抽取100个灯泡,测得其平均寿命为1800小时,标准差为6小时。要求: (1)按68.27%概率计算抽样平均数的极限误差; (2)按以上条件,若极限误差不超过0.4小时,应抽取多少只灯泡进行测试; (3)按以上条件,若概率提高到95.45%,应抽取多少灯泡进行测试? (4)若极限误差为0.6小时,概率为95.45%,应抽取多少灯泡进行测试? (5)通过以上计算,说明极限误差、抽样单位数和概率之间的关系。
某特定品牌轮胎的预期寿命服从均值为40000英里,标准差为5000英里的正态分布根据上述信息,随机抽取一个轮胎,其寿命至少为30000英里的概率是()A、0.4772B、0.9772C、0.0228D、0.5000
某特定品牌轮胎的预期寿命服从均值为40000英里,标准差为5000英里的正态分布根据上述信息,随机抽取一个轮胎,其寿命刚好是47500英里的概率是?()A、0.0000B、0.9332C、0.0668D、0.4993
某灯泡公司生产的灯泡寿命服从均值为2000小时、标准差为30的威布尔分布,随机抽取100个样品组成一个样本做灯泡寿命试验,那样本寿命均值的分布应服从:()A、均值为2000,标准差为3的威布尔分布B、均值为2000,标准差为30的威布尔分布C、均值为2000,标准差为3的正态分布D、均值为2000,标准差为30的正态分布
单选题某灯泡公司生产的灯泡寿命服从均值为2000小时、标准差为30的威布尔分布,随机抽取100个样品组成一个样本做灯泡寿命试验,那样本寿命均值的分布应服从:()A均值为2000,标准差为3的威布尔分布B均值为2000,标准差为30的威布尔分布C均值为2000,标准差为3的正态分布D均值为2000,标准差为30的正态分布
多选题关于区间估计原理正确的是()。A在其他条件相同的情况下,置信概率越大置信区间也越大B在其他条件相同的情况下,置信概率越大置信区间越小C根据正态分布的性质随机变量落在平均数两侧1个标准差范围内的概率为68.3%D根据正态分布的性质随机变量落在平均数两侧1个标准差范围内的概率为95.45%E当置信概率为95%时,意味着估计的可靠性为95%
单选题根据正态分布的性质,随机变量落在平均数两侧1个标准差范围内的概率为()。A68.3%B90%C95.45%D99%