系统的幅值穿越频率是开环极坐标曲线与负实轴相交处频率() 此题为判断题(对,错)。
对数相频特性曲线与-180°线相交处的频率,或者说频率特性函数的相位等于-180°时的频率,称为相位穿越频率或相位交界频率。() 此题为判断题(对,错)。
I型系统的Bode图幅频特性曲线中,穿越频率和开环增益的值() A、不相等B、相等C、成线性D、以上都不是
系统开环对数幅频特性曲线与( )的交点频率称为系统的截止频率。A. 0o 线B. 积分环节的对数曲线C. 相频曲线D. 零分贝线
设ωc为幅值穿越频率,φ(ωc)为开环频率特性幅值为1时的相位角,则相位裕量为()。 A.180°-φ(ωc)B.φ(ωc)C.180°+φ(ωc)D.90°+φ(ωc)
开环对数幅频特性曲线低频积的形状只决定于系统的开环增益K和积分环节的数目V(对最小相位系统而言)。()
判定系统稳定性的穿越概念就是开环极坐标曲线穿过实轴上()的区间。
剪切频率ωC是()A、开环相频曲线-1800的频率B、开环对数幅频曲线交0db线的频率C、闭环相频特性最大处的频率D、闭环幅值比初值下降3db时的频率E、开环极坐标曲线上幅值为1时的频率
欠阻尼二阶系统的输出信号的衰减振荡角频率为()A、无阻尼固有频率B、有阻尼固有频率C、幅值穿越频率D、相位穿越频率
系统的相位穿越频率是开环极坐标曲线与()相交处的频率。
系统开环频率特性的相位裕量愈大,则系统的()愈好.
系统开环传递函数G(s),所示在右半平面上的极点数为P,则闭环系统稳定的充分必要条件是:在开环对数幅频特性L(w)0dB的所有频段内,当频率增时对数相频特性对-180度相位线的正、负穿越次数之差为P/2。
判定系统稳定性的穿越概念就是开环极坐标曲线穿过实轴上()A、(-∞,0)的区间B、(-∞,0]的区间C、(-∞,-1)的区间D、(-∞,-1]的区间
系统的幅值穿越频率是开环极坐标曲线与()A、负实轴相交处频率B、单位圆相交处频率C、Bode图上零分贝线相交处频率D、Bode图上-180°相位线相交处频率
相位穿越频率ωg是()A、开环相频曲线-1800的频率B、开环对数幅频曲线交0db线的频率C、闭环相频特性最大处的频率D、闭环幅值比初值下降3db时的频率
系统的相位穿越频率是开环极坐标曲线与()A、负实轴相交处频率B、单位圆相交处频率C、Bode图上零分贝线相交处频率D、Bode图上-180°相位线相交处频率
若系统无开环右极点且其开环极坐标曲线只穿越实轴上区间(-1,+∞),则该闭环系统一定()。
填空题系统开环频率特性的相位裕量愈大,则系统的()愈好.
多选题剪切频率ωC是()A开环相频曲线-1800的频率B开环对数幅频曲线交0db线的频率C闭环相频特性最大处的频率D闭环幅值比初值下降3db时的频率E开环极坐标曲线上幅值为1时的频率
填空题系统的幅值穿越频率是开环极坐标曲线()处的频率。
填空题若系统无开环右极点且其开环极坐标曲线只穿越实轴上区间(-1,+∞),则该闭环系统一定()。
单选题欠阻尼二阶系统的输出信号的衰减振荡角频率为()A无阻尼固有频率B有阻尼固有频率C幅值穿越频率D相位穿越频率
单选题判定系统稳定性的穿越概念就是开环极坐标曲线穿过实轴上()A(-∞,0)的区间B(-∞,0]的区间C(-∞,-1)的区间D(-∞,-1]的区间
多选题相位穿越频率ωg是()A开环相频曲线-1800的频率B开环对数幅频曲线交0db线的频率C闭环相频特性最大处的频率D闭环幅值比初值下降3db时的频率
填空题判定系统稳定性的穿越概念就是开环极坐标曲线穿过实轴上()的区间。
填空题系统的相位穿越频率是开环极坐标曲线与()相交处的频率。