在平面解析几何中,当动点到一个定点的距离与它到一条定直线(定点不在定直线上)的距离之比是常数时,该动点的轨迹为圆锥曲线。常数的值不同,圆锥曲线的形状就不同。当常数小于1时,轨迹是椭圆;当常数等于1时,轨迹是抛物线;当常数大于1时,轨迹是双曲线。上述结论说明()①共性寓于个性中②矛盾的同一性推动事物的发展③事物的量变引起质变④事物的联系是具体的,多变的A、①②③B、②③④C、①②④D、①③④
在平面解析几何中,当动点到一个定点的距离与它到一条定直线(定点不在定直线上)的距离之比是常数时,该动点的轨迹为圆锥曲线。常数的值不同,圆锥曲线的形状就不同。当常数小于1时,轨迹是椭圆;当常数等于1时,轨迹是抛物线;当常数大于1时,轨迹是双曲线。上述结论说明()①共性寓于个性中②矛盾的同一性推动事物的发展③事物的量变引起质变④事物的联系是具体的,多变的
- A、①②③
- B、②③④
- C、①②④
- D、①③④
相关考题:
下列说法正确的是:( ).A.同一架飞机,在不同机场使用的起飞滑跑距离将一样长。B.同一架飞机,ACN值是一个常数。C.同一架飞机,PCN值是一个常数。D.同一条跑道,PCN值不一定是一个常数。
下列关于椭圆的论述正确的个数是( )。①平面内到两个定点的距离之和等于常数的动点轨迹是椭圆②平面内到定点和定直线距离之比大于1的常数的动点轨迹是椭圆③从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆另外一个焦点④平面与圆柱面的截线是椭圆A.0B.1C.2D.3
下列关于椭圆的论述,正确的是()。A.平面内到两个定点的距离之和等于常数的动点轨迹是椭圆B.平面内到定点和定直线距离之比小于1的动点轨迹是椭圆C.从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆另一个焦点D.平面与圆柱面的截线是椭圆
下列关于椭圆的叙述,正确的是( )。A.平面内两个定点的距离之和等于常数的动点轨迹是椭圆B.平面内到定点和定直线距离之比大于1的动点轨迹是椭圆C.从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆的另一个焦点D.平面与圆柱面的截线是椭圆
下列关于椭圆的论述,正确的是()。①平面内到两个定点的距离之和等于常数的动点轨迹是椭圆②平面内到定直线和直线外的定点距离之比为大于1的常数的动点轨迹是椭圆③从椭圆的一个焦点发出的射线,经椭圆反射后通过椭圆另一个焦点④平面与圆柱面的截线是椭圆正确的个数是()。A.0B.1C.2D.3
在平面解析几何中,当动点到一个定点的距离与它到一条定直线(定点不在定直线上)的距离之比是常数时,该动点的轨迹为圆锥曲线。常数的值不同,圆锥曲线的形状就不同,当常数小于1时,轨迹是椭圆;当常数等于1时,轨迹是抛物线;当常数大于1时,轨迹是双曲线。上述结论表明() ①共性寓于个性之中 ②矛盾的同一性推动事物的变化 ③事物的量变引起质变 ④事物的联系是具体的,多变的A、①③B、③④C、①②④D、①③④
在平面解析几何中,当动点到一个定点的距离与它到一条定直线(定点不在定直线上)的距离之比是常数时,该动点的轨迹为圆锥曲线。常数的值不同,圆锥曲线的形状就不同。当常数小于1时,轨迹是椭圆;当常数等于1时,轨迹是抛物线;当常数大于1时,轨迹是双曲线。上述结论表明() ①共性寓于个性之中 ②事物的发展是前进性与曲折性的统一 ③量变会引起质变 ④事物的联系是具体的、多样的A、①③B、①②④C、③④D、①③④
关于一阶环节的时间常数T,当输入信号X(t)=A时,输出信号Y(t)实际上沿其指数曲线上升,那么关于时间常数T的测定,下面叙述正确的是()。A、以初始速度恒速上升,当达到稳态值时所用的时间就是时间常数TB、以某时刻速度恒速上升,当达到稳态值时所用的时间就是时间常数TC、当Y(t)达到稳定值的0.618处,所经历的时间其数值恰好为时间常数TD、当Y(t)达到稳定值的0.632处,所经历的时间其数值恰好为时间常数T
下列说法正确的是()。A、同一架飞机,在不同机场使用的起飞滑跑距离将一样长。B、同一架飞机,ACN值是一个常数。C、同一架飞机,PCN值是一个常数。D、同一条跑道,PCN值不一定是一个常数。
单选题在平面解析几何中,当动点到一个定点的距离与它到一条定直线(定点不在定直线上)的距离之比是常数时,该动点的轨迹为圆锥曲线。常数的值不同,圆锥曲线的形状就不同。当常数小于1时,轨迹是椭圆;当常数等于1时,轨迹是抛物线;当常数大于1时,轨迹是双曲线。上述结论说明()①共性寓于个性中②矛盾的同一性推动事物的发展③事物的量变引起质变④事物的联系是具体的,多变的A①②③B②③④C①②④D①③④
单选题当导热系数λ为常数时,平壁内的温度呈()变化。A上抛物线B下抛物线C直线D不一定