在平面中三角形内角和等于180°,但在球面中,三角形内角和大于180°,在凹面中内角和小于180°。这说明()。A、真理具有绝对性B、真理具有相对性C、真理具有客观性D、真理具有全面性

在平面中三角形内角和等于180°,但在球面中,三角形内角和大于180°,在凹面中内角和小于180°。这说明()。

  • A、真理具有绝对性
  • B、真理具有相对性
  • C、真理具有客观性
  • D、真理具有全面性

相关考题:

欲确定一个平面三角形至少需要观测其几个内角()。 A、一个内角B、两个内角C、三个内角。

“三角形的内角和等于180°”属于条件性知识。( )

三角形的内角和为180°,问六边形的内角和是多少度?( )A.720B.600C.480D.360

如果三角形的一个外角等于和它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形各内角 如果三角形的一个外角等于和它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形各内角的度数是_____________。

公元前3世纪,古希腊数学家欧几里得提出:“三角形内角之和等于180度。”19世纪德国数学家黎曼提出:“在球面上,三角形内角之和大于180度。”后来,俄国数学家罗巴切夫斯基又提出:“在凹面上,三角形内角之和小于180度。”这一认识过程说明A.真理具有客观性B.真理具有相对性C.真理具有绝对性D.真理具有唯一性

平面三角形∶内角和180度A.恒星∶太阳B.磁铁∶南极北极C.军人∶手枪D.电话∶电极

知道“三角形的内角和等于180°”,属于( ) 。

在平面中三角形内角和等于180度,在球面中三角形内角和大于180度,在凹面中三角形内角和小于180度,这说明( )。A.真理具有决定性B.真理具有相对性C.真理具有客观性D.真理具有全面性

三角形的内角和为180度,问六边形的内角和是多少度:A540B360C450D720

初中数学《三角形内角和》一、考题回顾题目来源:5月18日 上午 吉林省通化市 面试考题试讲题目1.题目:三角形内角和2.内容:3.基本要求:(1)能够证明三角形的内角和是180°,并解决相关问题。(2)试讲十分钟;(3)要有合适的板书。答辩题目1.在验证三角形的内角和的过程中运用了哪些教学方法?2.本节课的在教材中的地位和作用?

对某一三角形的内角进行观测,其内角和为180°00′03″.则此次观测的三角形内角和真误差值为3″。

三角形闭合差为三角形三内角观测值之和与180°加球面角超之差。

三角形三内角观测之和等于()。A、90°B、180°C、270°D、360°

材料一人类认识和把握世界的过程,也就是追求真理的过程。我们可以用纸折叠的方式来检验在平面上三角形内角之和等于180度,不管我们以前有没有认识到这一点,它都是不以人的意志为转移的,是客观存在的。我们实践中获得了平面上三角形内角之和等于180度的真理性的认识。 材料二我们知道了在平面上三角形内角之和等于180度。19世纪初,德国数学家指出:在球形凸面上,三角形内角之和大于180度。由此,人们关于空间的观念发生了革命性的转变。我们在地球仪上随意选择三点构成三角形直观感悟内角之和的情况。可以看到赤道、经线90度和0度经线构成270度的角。 材料三 随着农林畜牧业的发展、土地丈量和利用的增多,使人们逐渐确立了三角形内角之和等于180度的认识。随着航海事业的发展和人们对球面认识的不断深入,这一认识的局限性逐渐暴露出来。 19世纪初,俄国数学家提出:在凹曲面上,三角形内角之和小于180度。 这个过程受到了什么因素的制约?

球面三角形三内角之和小于180°。

在哪个几何体系中三角形三内角之和等于180度()

在黎曼几何中,三角形三个内角和()180度。A、大于B、等于C、小于D、以上都不对

在哪个几何体系中三角形三内角之和大于180度()

在正曲率空间(如球面)中,三角形三内角之和().A、等于180度B、大于180度C、小于180度D、等于360度

单选题在平面中三角形内角和等于180°,但在球面中,三角形内角和大于180°,在凹面中内角和小于180°。这说明()。A真理具有绝对性B真理具有相对性C真理具有客观性D真理具有全面性

单选题在正曲率空间(如球面)中,三角形三内角之和().A等于180度B大于180度C小于180度D等于360度

判断题三角形闭合差为三角形三内角观测值之和与180°加球面角超之差。A对B错

填空题在哪个几何体系中三角形三内角之和大于180度()

单选题在黎曼几何中,三角形三个内角和()180度。A大于B等于C小于D以上都不对

填空题在哪个几何体系中三角形三内角之和等于180度()

判断题球面三角形三内角之和小于180°。A对B错

单选题三角形内角之和等于180°。但是,在凹曲面上,三角形内角之和小于180°,而在球形凸面上,三角形内角之和大于180°。这说明( )。①真理和谬误往往是相伴而行的②真理是有条件的、具体的③对同一个确定对象的认识可以有多个真理④任何真理都有自己适用的条件和范围A①④B②③C①③D②④