设f(x)在x=a的某个邻域内有定义,则f(x)在x-a处可导的一个充分条件是( )。
设f(x)在x=a的某个邻域内有定义,则f(x)在x-a处可导的一个充分条件是( )。
参考解析
解析:用可导的定义判断
相关考题:
下列命题正确的是(). A若|f(x)|在x=a处连续,则f(x)在x=a处连续 B若f(x)在x=a处连续,则|f(x)|在x=a处连续 C若f(x)在x=a处连续,则f(x)在z-a的一个邻域内连续 D若[f(a+h)-f(a-h)]=0,则f(x)在x=a处连续
设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )。A.(x-a)[f(x)-f(a)]≥0B.(x-a)[f(x)-f(a)]≤0C.D.
设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0B.f(a)=0且f′(a)≠0C.f(a)>0且f′(a)>D.f(a)<0且f′(a)<
设y=f(x)是微分方程y-2y+4y=0的一个解,又f(xo)>0,f(xo)=0,则函数f(x)在点xo( ).A.取得极大值B.取得极小值C.的某个邻域内单调增加D.的某个邻域内单调减少
设f(x)可导,F(x)=f(x)[1-|ln(1+x)|],则f(0)=0是F(x)在x=0处可导的( )《》( )A.充分必要条件B.充分但非必要条件C.必要但非充分条件D.既非充分条件也非必要条件
设y=f(x)是微分方程y"-2y’+4y=0的一个解,又f(x0)O,f’(x0)=0,则函数f(x)在点x0().A、取得极大值B、取得极小值C、的某个邻域内单调增加D、的某个邻域内单调减少
下列结论不正确的是()。A、y=f(x)在点x0处可微,则f(x)在点x0处连续B、y=f(x)在点x0处可微,则f(x)在点x0处可导C、y=f(x)在点x0处连续,则f(x)在点x0处可微D、y=f(x)在点x0处可导,则f(x)在点x0处连续
单选题设y=f(x)是微分方程y"-2y’+4y=0的一个解,又f(x0)O,f’(x0)=0,则函数f(x)在点x0().A取得极大值B取得极小值C的某个邻域内单调增加D的某个邻域内单调减少
单选题设y=f(x)是满足微分方程y″+y′-esinx=0的解,且f′(x0)=0,则f(x)在( )。Ax0的某个邻域内单调增加Bx0的某个邻域内单调减少Cx0处取得极小值Dx0处取得极大值
单选题下列说法中正确的是( )。[2014年真题]A若f′(x0)=0,则f(x0)必须是f(x)的极值B若f(x0)是f(x)的极值,则f(x)在点x0处可导,且f′(x0)=0C若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的必要条件D若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的充分条件
单选题设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f‴(2)=( )。Ae2Be3C2e2D2e3