设随机变量X的分布密度为( )。
设随机变量X的分布密度为( )。
参考解析
解析:提示:利用分布函数与概率密度的关系。
相关考题:
设连续型随机变量X的密度函数为f(x),分布函数为F(x).如果随机变量X与-X分布函数相同,则().A.F(z)=F(-x)B.F(x)=F(-x)C.F(X)=F(-x)D.f(x)=f(-x)
设X1,X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则()A、f1(x)+f2(x)必为某一随机变量的概率密度B、f1(x)f2(x)必为某一随机变量的概率密度C、F1(x)+F2(x)必为某一随机变量的分布函数D、F1(x)F2(x)必为某一随机变量的分布函数
设随机变量X的概率密度为fX(x),随机变量Y的概率密度为fY(y),则二维随机变量(X、Y)的联合概率密度为fX(x)fY(y)。