若X服从二项分布b(k;n,p),则EX=p《》( )
若X服从二项分布b(k;n,p),则EX=p《》( )
参考解析
解析:
相关考题:
已知随机变量X服从二项分布,且E(X)=2.4,D(X)=1.44,则二项分布的参数n,p的值为()。 A、n=4,p=0.6B、n=6,p=0.4C、n=4,p=0.3D、n=24,p=0.1
在某事件的每次实验中,设成功的概率为P,则失败的概率为Q(=1-P),在n次实验中,该事件成功k次的概率为Pn(k)=CnkPk(1-P)n-k,问成功次数k服从什么分布A、泊松分布B、二项分布C、正态分布D、F分布E、超儿何分布
已知随机变量X服从二项分布,且E(X)=2.4,D(X)=1.44,则二项分布的参数n,p分别是:A. n=4,p=0. 6B. n=6,p=0.4C. n=8,p=0.3D.n=24,p=0. 1
在假设检验中,如果两个总体的分布没有重叠,那么()A、若n增大,P(x)与P(n-x)的差减少B、若n增大,二项分布图形接近正态分布C、若接近0.5,二项分布图形接近正态分布D、若nπ>5,二项分布图形接近正态分布E、二项分布中的n很大,π很小,则可用泊松分布近似二项分布
把一颗均匀骰子掷了6次,假定各次出现的点数相互不影响,随机变量X表示出现6点的次数,则X服从().A、参数n=6,p=1/2的二项分布B、参数n=1,p=1/6的二项分布C、参数,n=6,p=1/6的二项分布D、非二项分布
单选题若某人群某疾病发生的阳性数X服从二项分布,则从该人群中随机抽出n个人,阳性数X不少于k人的概率为()。AP(k+1)+P(k+2)+…+P(n)BP(0)+P(1)+…+P(k)CP(0)+P(1)+…+P(k+1)DP(k)+P(k+1)+…+P(n)EP(1)+P(2)+…+P(k)
单选题把一颗均匀骰子掷了6次,假定各次出现的点数相互不影响,随机变量X表示出现6点的次数,则X服从().A参数n=6,p=1/2的二项分布B参数n=1,p=1/6的二项分布C参数,n=6,p=1/6的二项分布D非二项分布
单选题已知随机变量X服从二项分布,且E(X)=2.4,D(X)=1.44,则二项分布的参数n、p分别是:()An=4,p=0.6Bn=6,p=0.4Cn=8,p=0.3Dn=24,p=0.1
单选题在假设检验中,如果两个总体的分布没有重叠,那么()A若n增大,P(x)与P(n-x)的差减少B若n增大,二项分布图形接近正态分布C若接近0.5,二项分布图形接近正态分布D若nπ>5,二项分布图形接近正态分布E二项分布中的n很大,π很小,则可用泊松分布近似二项分布
单选题设随机变量X服从正态分布N(μ,16),Y服从正态分布N(μ,25).记p=P(X≤μ-4),g=P(Y≥μ+5),则p与q的大小关系是().ApqBpCp=qD不能确定