一平面简谐波沿x轴负方向传播,其振幅A=0.01m,频率υ=550Hz,波速u=330m·s-1。若t=0时,坐标原点O处质元达到负的最大位移,则该波的表达式为( )。A、y=0.01cos[2π(550t+1.67x)+π]B、y=0.01cos[2π(550t-1.67x)+π]C、y=0.01cos[2π(550t+1.67x)-π]D、y=0.01cos[2π(550t-1.67x)-π]
一平面简谐波沿x轴负方向传播,其振幅A=0.01m,频率υ=550Hz,波速u=330m·s-1。若t=0时,坐标原点O处质元达到负的最大位移,则该波的表达式为( )。
A、y=0.01cos[2π(550t+1.67x)+π]
B、y=0.01cos[2π(550t-1.67x)+π]
C、y=0.01cos[2π(550t+1.67x)-π]
D、y=0.01cos[2π(550t-1.67x)-π]
B、y=0.01cos[2π(550t-1.67x)+π]
C、y=0.01cos[2π(550t+1.67x)-π]
D、y=0.01cos[2π(550t-1.67x)-π]
参考解析
解析:按题设A=0.01m,v=550Hz,u=330m·s-1则波长按题意,原点处质元达到负的最大位移,即y0=-A,v0=0,初相φ0=π,则O点处质元的振动方程为y0=Acos(ωt+φ0)=0.01cos[2π(550t)+1π],因为波沿x轴负方向传
相关考题:
一平面简谐波在t=0时的波形曲线如图所示,设波沿x轴正向传播,波速υ=1.6×10-1m/s,则该波的角频率ω=______rad/s,坐标原点处的质元作简谐振动的表达式为y=_____(SI)。
一简谐波沿x轴正向传播,波的振幅为A,角频率为ω,波速为u。若以原点处的质元经平衡位置正方向运动时作为计时的起点,则该波的波动方程是( )。A.y=Acos[ω(t-x/u)+π/2]B.y=Acos[ω(t-x/u)-π/2]C.y=Acos[ω(t-x/u)+π]D.y=Acos[ω(t-x/u)-π/3]
—平面简谐波沿x轴正方向传播,振幅A=0. 02m,周期T=0. 5s,波长λ=100m,原点处质元的初相位φ=0,则波动方程的表达式为:A.y=0.02cos2π(t/2-0.01x) (SI)B.y=0.02cos2π(2t-0.01x) (SI)C.y=0.02cos2π(t/2-100x) (SI)D.y=0.02cos2π(2t-100x) (SI)
一平面谐波沿x轴正方向传播,振幅A=0.02m,周期T=0.5s,波长λ=100m,原点处质元的初相位φ=0,则波动方程的表达式为( )。A.B.y=0.02cos2π(2t-0.01x)(SI)C.D.y=0.02cos2π(2t-100x)(SI)
一平面简谐波沿x轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acosωt,波速为u,则波动方程为()A、y=Acosω[t-(x-L)/u]B、y=Acosω[t-(x+L)/u]C、y=Acosω[t+(x+L)/u]D、y=Acosω[t+(x-L)/u]
一列横波沿x轴正方向传播,它的波动表达式为y=0.02cosπ(5x-200t),则下列说明正确的是()。 (1)其振幅为0.02m; (2)频率为100Hz; (3)波速为40m·s-1; (4)波沿x轴负向传播。A、(1)、(2)、(3)、(4)B、(1)、(2)、(3)C、(2)、(3)、(4)D、(1)、(2)、(4)
一平面简谐波沿X轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acosωt,波速为u,那么x=0处质点的振动方程为()。A、y=Acosω(t+L/u)B、y=Acosω(t-L/u)C、y=Acos(ωt+L/u)D、y=Acos(ωt-L/u)
一平面简谐波沿x轴负方向传播,其振幅A=0.01m,频率v=550Hz,波速u=330m·s-1。若t=0时,坐标原点O处质元达到负的最大位移,则该波的表达式为()。A、y=0.01cos[2π(550t+1.67x)+π]B、y=0.01cos[2π(550t-1.67x)+π]C、y=0.01cos[2π(550t+1.67x)-π]D、y=0.01cos[2π(550t-1.67x)-π]
单选题一平面简谐波沿X轴正向传播,已知x=L(Lt,波速为u,那么x=0处质点的振动方程为()。Ay=Acosω(t+L/u)By=Acosω(t-L/u)Cy=Acos(ωt+L/u)Dy=Acos(ωt-L/u)
单选题一平面简谐波沿x轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acosωt,波速为u,则波动方程为()Ay=Acosω[t-(x-L)/u]By=Acosω[t-(x+L)/u]Cy=Acosω[t+(x+L)/u]Dy=Acosω[t+(x-L)/u]