判断题DBSCAN是相对抗噪声的,并且能够处理任意形状和大小的簇。A对B错
判断题
DBSCAN是相对抗噪声的,并且能够处理任意形状和大小的簇。
A
对
B
错
参考解析
解析:
暂无解析
相关考题:
关于聚类算法K-Means和DBSCAN的叙述中,不正确的是( )。A.K-Means和DBSCAN的聚类结果与输入参数有很大的关系B.K-Means基于距离的概念而DBSCAN基于密度的概念进行聚类分析C.K-Means很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇D.当簇的密度变化较大时,DBSCAN不能很好的处理,而K-Means则可以
下面关于Jarvis-Patrick(JP)聚类算法的说法不正确的是()。A、JP聚类擅长处理噪声和离群点,并且能够处理不同大小、形状和密度的簇B、JP算法对高维数据效果良好,尤其擅长发现强相关对象的紧致簇C、JP聚类是基于SNN相似度的概念D、JP聚类的基本时间复杂度为O(m)
关于K均值和DBSCAN的比较,以下说法不正确的是()。A、K均值丢弃被它识别为噪声的对象,而DBSCAN一般聚类所有对象B、K均值使用簇的基于原型的概念,而DBSCAN使用基于密度的概念C、K均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇D、K均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇
单选题下面关于Jarvis-Patrick(JP)聚类算法的说法不正确的是()。AJP聚类擅长处理噪声和离群点,并且能够处理不同大小、形状和密度的簇BJP算法对高维数据效果良好,尤其擅长发现强相关对象的紧致簇CJP聚类是基于SNN相似度的概念DJP聚类的基本时间复杂度为O(m)
单选题关于K均值和DBSCAN的比较,以下说法不正确的是()AK均值丢弃被它识别为噪声的对象,而DBSCAN一般聚类所有对象BK均值使用簇的基于原型的概念,而DBSCAN使用基于密度的概念CK均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇DK均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇
判断题量器的形状和大小不同,测量的结果也不同。A对B错