单选题设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。[2018年真题]Af(x)/g(x)>f(a)/g(b)Bf(x)/g(x)>f(b)/g(b)Cf(x)g(x)>f(a)g(a)Df(x)g(x)>f(b)g(b)

单选题
设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。[2018年真题]
A

f(x)/g(x)>f(a)/g(b)

B

f(x)/g(x)>f(b)/g(b)

C

f(x)g(x)>f(a)g(a)

D

f(x)g(x)>f(b)g(b)


参考解析

解析:
因为[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)>0,所以函数f(x)g(x)在[a,b]上单调递增。所以,当x∈(a,b)时,f(a)g(a)<f(x)g(x)<f(b)g(b)。

相关考题:

若F(x)与G(x)均为f (x)在区间I上的原函数,则F(x)与G(x)相差一个_________.

设函数f(x)=lnx,g(x)=e2x+1,则f[g(x)]=______。

设f(x)=3x,g(x)=x2,则函数g[f(x)]-f[g(x)]=_______________.

设f(x),g(x),h(x)均为奇函数,则()中所给定的函数是偶函数。 A、f(x)g(x)h(x)B、[f(x)+g(x)]h(x)C、f(x)+g(x)D、f(x)+g(x)+h(x)

函数f(x)=2x+3,g(x)=6x+k,且f[g(x)]=g[f(x)]则k=() A、0B、15C、10D、不存在

设函数f(x)为奇函数,g(x)为偶函数,则复合函数()是奇函数。 A.f(f(x))B.g(f(x))C.f(g(x))D.g(g(x))

设f(0)=g(0),且当x30时,f'(x)>g'(x),则当x>0时有()。 A.f(x)B.f(x)>g(x)C.f(x)=g(x)D.以上都不对

设f(x),g(x)ϵP[x J. 若f(x)lg(x),g(x)lf(x),则 f(x)与g(x)的关系是( ).

设f(x)为偶函数,g(x)为奇函数,则下列函数中为奇函数的是(  )。 A. f[g(x)] B. f[f(x)] C. g[f(x)] D. g[g(x)]

设函数f(x)与g(x)在[0,1]上连续,且f(x)≤g(x),且对任何的c∈(0,1)( )

设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。 A. [f(x)/g(x)]>[f(a)/g(b)] B. [f(x)/g(x)]>[f(b)/g(b)] C. f(x)g(x)>f(a)g(a) D. f(x)g(x)>f(b)g(b)

设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上 A.A当f'(x)≥0时,f(x)≥g(x)B.当f'(x)≥0时,f(x)≤g(x)C.当f"(x)≥0时,f(x)≥g(x)D.当f"(x)≥0时,f(x)≤g(x)

设函数f(x)=x+aln(1+x)+bxsinx,g(x)=kx^3,若f(x)与g(x)在x→0是等价无穷小,求a,b,k值.

已知函数f(x)=lg(x+1)。 (1)若0(2)若g(x)9;g 2为周期的偶函数,且当0≤x≤1时,有g(x)=f(x),求函数y-=g(x)x∈[1,2])的反函数。

设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。

设g(x)在(-∞,+∞)严格单调递减,且f(x)在x=x0处有极大值,则必有( )。A. g[f(x)]在x= x0处有极大值 B.g[f(x)]在x=x0处有极小值C.g[f(x)]在x=x0处有最小值 D. g[f(x)]在x=x0处既无极值也无最小值

设函数f(x)与g(x)均在(a,b)可导,且满足f'(x)A.必有f(x)>g(x)B.必有f(x)C.必有f(x)=g(x)D.不能确定大小

设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有( )《》( )A.f(x)g(b)>f(b)g(x)B.f(x)g(a)>f(a)g(x)C.f(x)g(x)>f(b)g(b)D.f(x)g(x)>f(a)g(a)

设f(x)和g(x)在(-∞,+∞)内可导,且f(x)<g(x),则必有( )《》( )

若f(x)|g(x)h(x)且(f(x),g(x))=1则()。A、g(x)B、h(x)C、f(x)D、f(x)

设f(x),g(x)∈F[x],若f(x)=0则有什么成立?()A、deg(f(x)g(x))B、deg(f(x)g(x))>max{degf(x),degg(x)}C、deg(f(x)+g(x))>max{degf(x),degg(x)}D、deg(f(x)+g(x))=max{degf(x),degg(x)}

设g(x)在(-∞,+∞)严格单调递减,且f(x)在x=x0处有极大值,则必有()。A、g[f(x)]在x=x0处有极大值B、g[f(x)]在x=x0处有极小值C、g[f(x)]在x=x0处有最小值D、g[f(x)]在x=x0既无极值也无最小值

单选题设f(x)g(x)在x0处可导,且f(x0)=g(x0)=0,f′(x0)g′(x0)>0,f″(x0)、g″(x0)存在,则(  )Ax0不是f(x)g(x)的驻点Bx0是f(x)g(x)的驻点,但不是它的极值点Cx0是f(x)g(x)的驻点,且是它的极小值点Dx0是f(x)g(x)的驻点,且是它的极大值点

问答题若F(x)是f(x)的一个原函数,G(x)是1/f(x)的一个原函数,且F(x)G(x)=-1,f(0)=1,求f(x)。

单选题设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。[2018年真题]Af(x)/g(x)>f(a)/g(b)Bf(x)/g(x)>f(b)/g(b)Cf(x)g(x)>f(a)g(a)Df(x)g(x)>f(b)g(b)

问答题设函数f(x),g(x)在[a,b]上连续,在(a,b)内可导,且对于(a,b)内一切x有f′(x)g(x)-f(x)g′(x)≠0。证明:如果f(x)在(a,b)内有两个零点,则介于两个零点之间,g(x)至少有一个零点。

问答题设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。

单选题设f(x),g(x)∈F[x],若f(x)=0则有什么成立?()Adeg(f(x)g(x))Bdeg(f(x)g(x))>max{degf(x),degg(x)}Cdeg(f(x)+g(x))>max{degf(x),degg(x)}Ddeg(f(x)+g(x))=max{degf(x),degg(x)}