在异方差条件下普通最小二乘法具有如下性质()A、线性B、无偏性C、最小方差性D、精确性E、有效性
在异方差条件下普通最小二乘法具有如下性质()
- A、线性
- B、无偏性
- C、最小方差性
- D、精确性
- E、有效性
相关考题:
异方差性将导致( )。A.普通最小二乘法估计量有偏和非一致B.普通最小二乘法估计量非有效C.普通最小二乘法估计量的方差的估计量有偏D.建立在普通最小二乘法估计基础上的假设检验失效E.建立在普通最小二乘法估计基础上的预测区间变宽
异方差性的影响主要有()。A、普通最小二乘估计量是有偏的B、普通最小二乘估计量是无偏的C、普通最小二乘估计量不再具有最小方差性D、建立在普通最小二乘估计基础上的假设检验失效E、建立在普通最小二乘估计基础上的预测区间变宽
下列关于异方差性、自相关性和多重共线性的说法,正确的有()。A、当存在异方差性、自相关性和多重共线性时,都会导致参数显著性检验失去意义B、当存在异方差性、自相关性和多重共线性时,利用普通最小二乘法的估计量都存在C、当存在异方差性、自相关性和多重共线性时,仍然可以进行模型预测D、当存在异方差性、自相关性和多重共线性时,如果参数估计量存在,那么都具有有效性E、当存在异方差性、自相关性和多重共线性时,都可以通过一定的方法进行补救
问答题简述用加权最小二乘法消除线性回归中异方差性的思想与方法。