计算题:设某厂商只把劳动作为可变要素,其生产函数为Q=-0.01L3+L2+36L,Q为厂商每天产量,L为工人的日劳动小时数。所有市场均为完全竞争的,单位产品价格为0.10美元,小时工资率为4.8美元,试求当厂商利润极大时: (1)厂商每天将投入多少劳动小时? (2)如果厂商每天支付的固定成本为50美元,厂商每天生产的纯利润为多少?

计算题:设某厂商只把劳动作为可变要素,其生产函数为Q=-0.01L3+L2+36L,Q为厂商每天产量,L为工人的日劳动小时数。所有市场均为完全竞争的,单位产品价格为0.10美元,小时工资率为4.8美元,试求当厂商利润极大时: (1)厂商每天将投入多少劳动小时? (2)如果厂商每天支付的固定成本为50美元,厂商每天生产的纯利润为多少?


相关考题:

设某产品需要两种生产要素:A和B,其生产函数为:Q=4A9B.如果A、B价格相等,则企业应使用同量的A和B。()

计算题:假定某厂商只有一种可变要素劳动L,产出一种产品Q,固定成本为既定,短期生产函数Q=-0。1L3+6L2+12L,求:(1)劳动的平均产量AP为最大值时的劳动人数(2)劳动的边际产量MP为最大值时的劳动人数(3)平均可变成本极小值时的产量

计算题:设完全市场中的代表性厂商的短期成本函数是STC=20+240Q-20Q2+Q3,若该产品的市场价格是315元,试问:(1)该厂商利润最大时的产量和利润(2)该厂商的不变成本和可变成本曲线(3)该厂商停止营业点(4)该厂商的短期供给曲线

计算题:设某厂商只把劳动作为可变要素,其生产函数为Q=-0.01L3+L2+36L,Q为厂商每天产量,L为工人的日劳动小时数。所有市场均为完全竞争的,单位产品价格为0.10美元,小时工资率为4.8美元,试求当厂商利润极大时:(1)厂商每天将投入多少劳动小时?(2)如果厂商每天支付的固定成本为50美元,厂商每天生产的纯利润为多少?

计算题:已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3-2Q2+15Q+10。试求: 计算题:已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3-2Q2+15Q+10。试求:(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;(2)当市场上价格下降为多少时,厂商必须停产;(3)厂商的短期供给函数

已知生产函数Q=LK,当Q=10时,PL= 4,PK = 1求(1)厂商最佳生产要素组合时资本和劳动的数量是多少?(2)最小成本是多少?

设完全竞争市场的需求函数为Qd=2000-10P,供给函数为Qs=500+20P,厂商的短期成本函数STC=Q3-4Q2+15Q+50.求该厂商的均衡产量和最大利润。

假定某厂商的边际成本函数MC=3Q2-30Q+100,且生产10单位产量时的总成本为1000。求:(1)固定成本的值。(2)总成本函数、总可变成本函数,以及平均成本函数、平均可变成本函数。

假定某厂商短期生产的边际成本函数为SMC(Q)=3Q2-8Q+100,且已知当产量Q=10时的总成本STC=2400,求相应的STC函数、SAC函数和AVC函数。

假定在短期生产的固定成本给定的条件下,某厂商使用一种可变要素L生产一种产品 (1)该生产函数的平均产量为极大值时的/使用量。 (2)该生产函数的平均可变成本为极小值时的总产量。

假定某厂商的边际成本函数为SMC=3Q2-30Q+100,而且生产10单位产量的总成本为1000, 求:(1)固定成本的值。 (2)总成本函数、总可变成本函数、平均成本函数、平均可变成本函数。

假定在短期生产的固定成本给定的条件下,某厂商使用一种可变要素L生产一种产品,其短期总成本函数为STC =5Q3 -18Q2 +100Q +160. 求:当产量Q为多少时,成本函数开始呈现出边际产量递减特征?

假设某厂商的短期生产函数为Q=35L+8L2-L3 求:(1)该企业的平均产量函数和边际产量函数。 (2)如果企业使用的生产要素的数量为/=6,是否处于短期生产的合理区间?为什么?

已知一个厂商的生产函数Q=1/11(4KL - L2一K2),其中K和L分别表示资本和劳动,且要素市场价格分别为v和ω。产品的市场价格为P,而该企业仅是一个价格接受者。假设该厂商产品的市场需求函数Q=a-0.5P。若劳动力市场是完全竞争的,求该厂商对劳动的需求函数。

假定某厂商的短期生产函数为Q=f(L,K)给定生产要素价格PL、PK和产品P且利润π>0 证明:该厂商在短期生产的第一阶段不存在利润最大化的点。

已知劳动是唯一的可变要素,生产函数为Q =A +10L - 5L2,产品市场是完全竞争的,劳动价格为W.试说明: (1)厂商为劳动的需求函数。 (2)厂商对劳动的需求量与工资反方向变化。 (3)厂商对劳动的需求量与产品价格同方向变化:

已知生产函数为:求:(1)厂商长期生产的扩展线方程。 (2)当PL =1、PK=1、Q=1000时,厂商实现最小成本的要素投入组合。

某寡头行业有两个厂商,厂商1为领导者,其成本函数为C1=13. 8Q1,厂商2为追随者,其成本函数为C2=20Q2,该市场的需求函数为P=1OO -0. 4Q.

考虑完全竞争市场里的某厂商,其短期生产函数为其中L是可变生产要素,K是固定生产要素,令L的价格为PL>O。 (1)结合图形和公式,说明生产的三个阶段划分的标准。 (2)若PL—PK,则最优要素组合应该在第几阶段进行?其具体位置如何选择?

设一厂商使用的可变要素为劳动L,其生产函数为Q= -O. O1L3+L2+38L 其中,Q为每日产量,L为每日投入的劳动小时数,所有市场(劳动市场及产品市场)都是完全竞争的,单位产品价格为0. 10美元,小时工资为5美元,厂商要求利润最大化。问厂商每天雇用多少小时的劳动?

假定某厂商短期生产的平均成本函数为SAC(Q)=200/Q+6-2Q+2Q^2,求该厂商的边际成本函数。

某企业生产一种产品,劳动为唯一可变要素,固定成本既定。短期生产函数Q=-0.1L3+6L22+12L,求: (1)劳动的平均产量函数和边际产量函数。 (2)企业雇用工人的合理范围是多少? (3)若已知劳动的价格为W=480,产品Q的价格为40,则当利润最大时,企业生产多少产品Q?

厂商用来生产产品的劳动、原材料和资本商品叫()A、生产函数B、生产要素C、固定成本D、可变成本

已知某企业的生产函数为Q=50L^(3/5)K^(3/5)(Q为产量,L为劳动,K为资本),则()A、生产函数为规模报酬递增B、生产函数为规模报酬递减C、生产函数为规模报酬不变D、生产要素报酬递增E、生产要素报酬递减

问答题计算题: 已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3-2Q2+15Q+10。试求: (1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润; (2)当市场上价格下降为多少时,厂商必须停产; (3)厂商的短期供给函数

问答题已知某厂商的生产函数为Q=0.5L1/3K2/3;当资本投入量K=50时资本的总价值为500;劳动的价格PL=5。求:  (1)劳动的投入函数L=L(Q);  (2)总成本函数、平均成本函数和边际成本函数;  (3)当产品的价格P=100时,厂商获得最大利润的产量和利润各是多少?

单选题厂商用来生产产品的劳动、原材料和资本商品叫()A生产函数B生产要素C固定成本D可变成本

单选题设某一厂商的生产函数为:Q=-0.1L3+6L2+12L(Q为每周产量,L为每周雇佣的劳动量),若产品、要素市场均完全竞争,产品价格为30元,周工资率为360元,厂商追求最大利润,则每周雇佣的劳动量是(  )。A30B40C50D20E15