一个整数规划问题如果存在两个以上的最优解,则该问题一定有无穷多最优解。

一个整数规划问题如果存在两个以上的最优解,则该问题一定有无穷多最优解。


相关考题:

● 线性规划问题就是面向实际应用,求解一组非负变量,使其满是给定的一组线性约束条件,并使某个线性目标函数达到极值。满是这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是(56)。(56)A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变C.线性规划问题如果存在可行解,则一定有最优解D.线性规划问题的最优解只可能是0个、1个或无穷多个

求解整数规划问题,可以通过先求解无整数约束的松弛问题最优解,然后对该最优解取整求得原整数规划的最优解

若线性规划问题有最优解,则要么最优解唯一,要么有无穷多最优解。()

用图解法求解一个关于最大利润的线性规划问题时,若其等利润线与可行解区域相交,但不存在可行解区域最边缘的等利润线,则该线性规划问题( )。 A 、有无穷多个最优解B 、有可行解但无最优解C 、有可行解且有最优解D 、无可行解

在二元线性规划问题中,如果问题有可行解,则一定有最优解。 () 此题为判断题(对,错)。

用图解法求解一个关于最大利润的线性规划问题时,若其等利润线与可行解区域相交,但不存在可行解区域最边缘的等利润线,则该线性规划问题( )。A.有无穷多个最优解B.有可行解但无最优解C.有可行解且有最优解D.无可行解

互为对偶的两个线性规划问题的解存在关系( )A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解

如果原问题有最优解,则对偶问题一定具有()。A、无穷多解B、无界解C、最优解D、不能确定

关于线性规划问题的图解法,下面()的叙述正确。A、可行解区无界时一定没有最优解B、可行解区有界时不一定有最优解C、如果在两个点上达到最优解,则一定有无穷多个最优解D、最优解只能在可行解区的顶点达到

平衡运输问题一定存在()。A、整数解B、最优解C、无穷多解D、以上都不对

线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有()。

判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。  (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。

在二元线性规划问题中,如果问题有可行解,则一定有最优解

如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。

在求解整数规划问题时,可能出现的是()。A、唯一最优解B、无可行解C、多重最佳解D、无穷多个最优解

互为对偶的两个线性规划问题的解存在关系()A、原问题无可行解,对偶问题也无可行解B、对偶问题有可行解,原问题可能无可行解C、若最优解存在,则最优解相同D、一个问题无可行解,则另一个问题具有无界解

若线性规划问题没有可行解,可行解集是空集,则此问题()A、没有无穷多最优解B、没有最优解C、有无界解D、有无界解

若线性规划问题的可行域是无界的,则该问题可能()A、无有限最优解B、有有限最优解C、有唯一最优解D、有无穷多个最优解E、有有限多个最优解

如果线性规划问题存在最优解,则最优解一定可以在可行解域的顶点上获得。

判断题如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。A对B错

问答题判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。  (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。

多选题若线性规划问题的可行域是无界的,则该问题可能()A无有限最优解B有有限最优解C有唯一最优解D有无穷多个最优解E有有限多个最优解

单选题平衡运输问题一定存在()。A整数解B最优解C无穷多解D以上都不对

单选题关于线性规划问题的图解法,下面()的叙述正确。A可行解区无界时一定没有最优解B可行解区有界时不一定有最优解C如果在两个点上达到最优解,则一定有无穷多个最优解D最优解只能在可行解区的顶点达到

判断题一个整数规划问题如果存在两个以上的最优解,则该问题一定有无穷多最优解。A对B错

多选题在求解整数规划问题时,可能出现的是()。A唯一最优解B无可行解C多重最佳解D无穷多个最优解

判断题在二元线性规划问题中,如果问题有可行解,则一定有最优解A对B错