当原问题可行,对偶问题不可行时,常用的求解线性规划问题的方法是()法。

当原问题可行,对偶问题不可行时,常用的求解线性规划问题的方法是()法。


相关考题:

下列说法正确的为() 。 A.如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解B.如果线性规划的对偶问题无可行解,则原问题也一定无可行解C.在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目 标函数值都一定不超过其对偶问题可行解的目标函数D.如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解

线性规划对偶问题可以采用哪些方法求解?一对对偶问题解可能出现的情形。

互为对偶的两个线性规划问题的解存在关系( )A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解

关于线性规划的原问题和对偶问题,下列说法正确的是()A、若原问题为无界解,则对偶问题也为无界解B、若原问题无可行解,其对偶问题具有无界解或无可行解C、若原问题存在可行解,其对偶问题必存在可行解D、若原问题存在可行解,其对偶问题无可行解

对偶单纯形法的最小比值规则是为了保证()A、使原问题保持可行B、使对偶问题保持可行C、逐步消除原问题不可行性D、逐步消除对偶问题不可行性

原问题具有无界解,则对偶问题不可行。

判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。  (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。

互为对偶的两个问题存在关系()A、原问题无可行解,对偶问题也无可行解B、对偶问题有可行解,原问题也有可行解C、原问题有最优解解,对偶问题可能没有最优解D、原问题无界解,对偶问题无可行解

说明线性规划原问题与对偶问题的关系。

互为对偶的两个线性规划问题的解存在关系()A、原问题无可行解,对偶问题也无可行解B、对偶问题有可行解,原问题可能无可行解C、若最优解存在,则最优解相同D、一个问题无可行解,则另一个问题具有无界解

根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解;反之,当对偶问题无可行解时,其原问题为无界解。

根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解。

若X、Y分别是线性规划的原问题和对偶问题的可行解,则有()。

如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解。()

线性规划问题的原单纯形解法,可以看作是保持原问题基本解可行,通过迭代计算,逐步将对偶问题的基本解从不可行转化为可行的过程。

对于线性规划问题,已知原问题基本解不可行,对偶问题基本解可行,可采用对偶单纯形法求解。

填空题当原问题可行,对偶问题不可行时,常用的求解线性规划问题的方法是()法。

问答题判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。  (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。

单选题关于线性规划的原问题和对偶问题,下列说法正确的是()A若原问题为无界解,则对偶问题也为无界解B若原问题无可行解,其对偶问题具有无界解或无可行解C若原问题存在可行解,其对偶问题必存在可行解D若原问题存在可行解,其对偶问题无可行解

填空题若X、Y分别是线性规划的原问题和对偶问题的可行解,则有()。

判断题根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解。A对B错

单选题对偶单纯形法的最小比值规则是为了保证()A使原问题保持可行B使对偶问题保持可行C逐步消除原问题不可行性D逐步消除对偶问题不可行性

单选题互为对偶的两个问题存在关系()A原问题无可行解,对偶问题也无可行解B对偶问题有可行解,原问题也有可行解C原问题有最优解解,对偶问题可能没有最优解D原问题无界解,对偶问题无可行解

判断题线性规划问题的原单纯形解法,可以看作是保持原问题基本解可行,通过迭代计算,逐步将对偶问题的基本解从不可行转化为可行的过程。A对B错

判断题如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解。()A对B错

判断题根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解;反之,当对偶问题无可行解时,其原问题为无界解。A对B错

判断题对于线性规划问题,已知原问题基本解不可行,对偶问题基本解可行,可采用对偶单纯形法求解。A对B错