线性规划问题若有最优解,则一定可以在可行域的什么点达到()。A、内点B、外点C、顶点D、几何点
线性规划问题若有最优解,则一定可以在可行域的什么点达到()。
- A、内点
- B、外点
- C、顶点
- D、几何点
相关考题:
● 线性规划问题就是面向实际应用,求解一组非负变量,使其满是给定的一组线性约束条件,并使某个线性目标函数达到极值。满是这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是(56)。(56)A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变C.线性规划问题如果存在可行解,则一定有最优解D.线性规划问题的最优解只可能是0个、1个或无穷多个
下列关于线性规划叙述正确的是()。A、线性规划问题,若有最优解,则必是一个基变量组的可行基解B、线性规划问题一定有可行基解C、线性规划问题的最优解只能在最低点上达到D、单纯型法求解线性规划问题时,每换基迭代一次必使目标函数值下降一次
关于线性规划问题的图解法,下面()的叙述正确。A、可行解区无界时一定没有最优解B、可行解区有界时不一定有最优解C、如果在两个点上达到最优解,则一定有无穷多个最优解D、最优解只能在可行解区的顶点达到
下列关于线性规划的解的情况的说法不正确的是()。A、最优解必定可在凸集的某一个顶点上达到。B、最优解也可能在凸集的某一条边界上达到。C、线性规划的可行域若有界,则一定有最优解。D、线性规划的可行域若无界,则一定无最优解。
判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。 (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。
单选题关于线性规划问题的图解法,下面()的叙述正确。A可行解区无界时一定没有最优解B可行解区有界时不一定有最优解C如果在两个点上达到最优解,则一定有无穷多个最优解D最优解只能在可行解区的顶点达到
单选题下列关于线性规划的解的情况的说法不正确的是()。A最优解必定可在凸集的某一个顶点上达到。B最优解也可能在凸集的某一条边界上达到。C线性规划的可行域若有界,则一定有最优解。D线性规划的可行域若无界,则一定无最优解。
判断题若线性规划问题具有可行解,且可行解域有界,则该线性规划问题最多具有有限个数的最优解。A对B错