袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X,则X所有可能取值的个数是()A.5B.9C.10D.25
袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X,则X所有可能取值的个数是()
A.5
B.9
C.10
D.25
参考答案和解析
根据题意,分析可得, 这是有放回抽样,号码之和可能的情况为:2、3、4、5、6、7、8、9、10, 共9种; 故选B.
相关考题:
袋子中有若干黑球和白球。若取出一个黑球,则袋中黑球占总球数的 2/7;若取出两个白球,则袋中白球占 2/3。从原来袋中抽出3个球,其中有且仅有1个黑球的概率:A.低于20%B.在20%—40%之间C.在40%—60%之间D.高于60%
袋子中有若干黑球和白球。若取出一个黑球,则袋中黑球占总球数的;若取出两个白球,则袋中白球占。从原来袋中抽出3个球,其中有且仅有1个黑球的概率:A.低于20%B.在20%—40%之间C.在40%—60%之间D.高于60%
袋中有10个大小相等的球,其中6个红球4个白球,随机抽取2次,每次取1个,定义两个随机变量如下: 就下列两种情况,求(X,Y)的联合分布律: (1)第一次抽取后放回;(2)第一次抽取后不放回.
袋中有1个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.(Ⅰ)求P{X=1|Z=0};(Ⅱ)求二维随机变量(X,Y)的概率分布.
有白球和黑球各3个且白球和黑球中各有两个球分别印有1、2两个号码。现将这6个球放入袋子里,充分搅匀后有放回地每次摸取一个球,则前两次恰好摸到同编号的异色球的概率为( )。A. 4/9 B. 4/15 C. 2/9 D.1/9
袋中有l个红色球,2个黑色球与三个白球,现有放回地从袋中取两次,每次取一球,以 X,Y,Z分别表示丽次取球所取得的红球、黑球与白球的个数。 (1)求P{X=1|Z=0}; (2)求二维随机变量(X,Y)的概率分布。
单选题将号码分别为1、2、…6的6个小球放入一个袋中,这些小球仅号码不同,其余完全相同。首先,从袋中摸出一个球,号码为A.;放回后,再从此袋再摸出一个球,其号码为B.,则使不等式A.-2B.+20成立的事件发生的概率为:A 1/6B 1/4C 1/3D 1/2
问答题五张卡片上分别写有号码1,2,3,4,5。随即抽取其中三张,设随机变量X表示取出三张卡片上的最大号码。写出X的所有可能取值