沿x轴正向传播平面单色电磁波为( )。

沿x轴正向传播平面单色电磁波为( )。



参考解析

解析:

相关考题:

一列沿x轴正向传播的平面简谐波,波长为4m。当波源的零相位传播到x=0处时,波源的π相位正好传播到的位置为( )A.x=-2mB.x=0C.x=2mD.x=4m

一平面简谐波沿x轴正向传播,已知P点(xp=L)的振动方程为y=Acos(ωt+φ0),则波动方程为( )。A.B.C.y=Acos[t-(x/u)]D.

一振幅为A,周期为T,波长λ的平面简谐波沿x轴负向传播,在x=λ/2处,t=T/4时,振动相位为π,则此平面简谐波的波动方程为( )。A.B.C.D.

一平面谐波以u的速率沿x轴正向传播,角频率为ω,那么,距原点x处(x>0)质点的振动相位与原点处质点的振动相位相比,具有的关系是( )。A.滞后ωx/uB.滞后x/uC.超前ωx/uD.超前x/u

一平面余弦波波源的振动周期T=0.5s,所激起的波的波长λ=10m,振幅为0.5m,当t=0时,波源处振动的位移恰为正向最大值,取波源处为原点并设波沿x轴正向传播,此波的波动方程为( )。

一平面简谐波沿x轴正向传播,已知波长λ,频率v,角频率w,周期T,初相Φ0,则下列表示波动方程的式子中,哪几个是正确的?A.ⅠB.Ⅰ、ⅡC.Ⅱ、ⅢD.Ⅰ、Ⅱ、Ⅲ

一列简谐横波在t1=0.5 S时的波形图如图所示。已知平衡位置在x=0.5 m的A处的质点,在t2=1.5s时第一次回到A处,且其速度方向指向y轴负方向。这列波(??)A.沿x轴正向传播,波速为1 m/sB.沿x轴正向传播,波速为2 m/sC.沿x轴负向传播,波速为1 m/sD.沿x轴负向传播,波速为2 m/s

测量学中高斯平面直角坐标系,X轴、Y轴的定义为(  )。A.X轴正向为东,Y轴正向为北B.X轴正向为西,Y轴正向为南C.X轴正向为南,Y轴正向为东D.X轴正向为北,Y轴正向为东

一列简谐横波沿x轴传播,t=0时刻的波形如图4所示,则从图中可以看出()。A.这列波的波长为5mB.波中的每个质点的振动周期为4SC.若已知波沿x轴正向传播.则此时质点a向下振动D.若已知质点b此时向上振动,则波是沿x轴负向传播的

一质点沿y轴方向做简谐振动,振幅为A,周期为T,平衡位置在坐标原点。在t=0时刻,质点位于y正向最大位移处,以此振动质点为波源,传播的横波波长为λ,则沿x轴正方向传播的横波方程为( )。

一平面简谐波沿x轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acosωt,波速为u,则波动方程为()A、y=Acosω[t-(x-L)/u]B、y=Acosω[t-(x+L)/u]C、y=Acosω[t+(x+L)/u]D、y=Acosω[t+(x-L)/u]

一平面简谐波以μ的速率沿x轴正向传播,角频率为ω,那么,距原点x处(x0)质点的振动相位总是比原点处质点的振动相位()。A、滞后ωx/μB、滞后x/μC、超前ωx/μD、超前x/μ

平面内作用于同一点的四个力若以力的作用点为坐标原点,有F1=5N,方向沿x轴的正向;F2=6N,沿y轴正向;F3=4N,沿x轴负向;F4=8N,沿y轴负向,以上四个力的合力方向指向()A、第一象限B、第二象限C、第三象限D、第四象限

一平面简谐波沿X轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acosωt,波速为u,那么x=0处质点的振动方程为()。A、y=Acosω(t+L/u)B、y=Acosω(t-L/u)C、y=Acos(ωt+L/u)D、y=Acos(ωt-L/u)

测量学中高斯平面直角坐标系X轴、Y轴的定义:()A、X轴正向指东、Y轴正向指北B、X轴正向指西、Y轴正向指南C、X轴正向指南、Y轴正向指东D、X轴正向指北、Y轴正向指东

一平面谐波以u的速率沿x轴正向传播,角频率为w。那么,距原点x处(x0)质点的振动相位与原点处质点的振动相位相比,有下列哪种关系?()A、滞后wx/uB、滞后x/uC、超前wx/uD、超前x/u

一平面简谐波沿x轴正向传播,已知x=-5m处质点的振动方程为y=Acosπt,波速为u=4m/s,则波动方程为:()A、y=Acosπ[t-(x-5)/4]B、y=Acosπ[t-(x+5)/4]C、y=Acosπ[t+(x+5)/4]D、y=Acosπ[t+(x-5)/4]

一平面谐波以u的速率沿x轴正向传播,角频率为ω。那么,距原点x处(x0)质点的振动相位与原点处质点的振动相位相比,有下列哪种关系()?A、滞后ωx/uB、滞后x/uC、超前ωx/uD、超前x/u

单选题一平面谐波以u的速率沿x轴正向传播,角频率为w。那么,距原点x处(x0)质点的振动相位与原点处质点的振动相位相比,有下列哪种关系?()A滞后wx/uB滞后x/uC超前wx/uD超前x/u

单选题一平面简谐波沿X轴正向传播,已知x=L(Lt,波速为u,那么x=0处质点的振动方程为()。Ay=Acosω(t+L/u)By=Acosω(t-L/u)Cy=Acos(ωt+L/u)Dy=Acos(ωt-L/u)

单选题A 这列波的波长为5mB 波中的每个质点的振动周期为4sC 若已知波沿x轴正向传播,则此时质点a向下振动D 若已知质点b此时向上振动,则波是沿x轴负向传播的

单选题测量学中高斯平面直角坐标系,X轴、Y轴的定义为(  )。AX轴正向为东,Y轴正向为北BX轴正向为西,Y轴正向为南CX轴正向为南,Y轴正向为东DX轴正向为北,Y轴正向为东

单选题一平面简谐波以μ的速率沿x轴正向传播,角频率为ω,那么,距原点x处(x0)质点的振动相位总是比原点处质点的振动相位()。A滞后ωx/μB滞后x/μC超前ωx/μD超前x/μ

单选题一平面简谐波沿z轴正向传播,已知x=L(Lλ)处质点的振动方程为Y=Acoswt,波速为u,那么x=0处质点的振动方程为()。Ay=Acos(wt+L/u)By=Acos(wt-L/u)Cy=Acosw(t+L/u)Dy=Acosow(t-L/u)

单选题一平面简谐波沿X轴正向传播,已知x=L(L0),波速为u,那么x=0处质点的振动方程为:()Ay=Acos[ω(t+L/u)+φ0]By=Acos[ω(t-L/u)+φ0]Cy=Acos[ωt+L/u+φ0]Dy=Acos[ωt-L/u+φ0]

单选题一平面简谐波沿x轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acosωt,波速为u,则波动方程为()Ay=Acosω[t-(x-L)/u]By=Acosω[t-(x+L)/u]Cy=Acosω[t+(x+L)/u]Dy=Acosω[t+(x-L)/u]

单选题测量学中,高斯平面直角坐标系X轴、Y轴的定义为(  )。[2012年真题]AX轴正向为东,Y轴正向为北BX轴正向为西,Y轴正向为南CX轴正向为南,Y轴正向为东DX轴正向为北,Y轴正向为东