一般使用Floyd算法求解单源点到其余顶点之间的最短路径。
一般使用Floyd算法求解单源点到其余顶点之间的最短路径。
参考答案和解析
错误
相关考题:
● 求单源点最短路径的迪杰斯特拉(Dijkstra )算法是按(57) 的顺序求源点到各 顶点的最短路径的。(57)A. 路径长度递减 B. 路径长度递增C. 顶点编号递减 D. 顶点编号递增
下面哪些使用的不是贪心算法()A.单源最短路径中的Dijkstra算法B.最小生成树的Prim算法C.最小生成树的Kruskal算法D.计算每对顶点最短路径的Floyd-Warshall算法
阅读下列说明,回答问题l和问题2,将解答填入答题纸的对应栏内。【说明】现需在某城市中选择一个社区建一个大型超市,使该城市的其他社区到该超市的距离总和最小。用图模型表示该城市的地图,其中顶点表示社区,边表示社区间的路线,边上的权重表示该路线的长度。现设计一个算法来找到该大型超市的最佳位置:即在给定图中选择一个顶点,使该顶点到其他各顶点的最短路径之和最小。算法首先需要求出每个顶点到其他任一顶点的最短路径,即需要计算任意两个顶点之间的最短路径;然后对每个顶点,计算其他各顶点到该顶点的最短路径之和;最后,选择最短路径之和最小的顶点作为建大型超市的最佳位置。下面是求解该问题的伪代码,请填充其中空缺的(1)至(6)处。伪代码中的主要变量说明如下:W:权重矩阵n:图的顶点个数sP:最短路径权重之和数组,SP[i]表示顶点i到其他各顶点的最短路径权重之和,i从1到nrain_SP:最小的最短路径权重之和min_v:具有最小的最短路径权重之和的顶点i:循环控制变量j:循环控制变量k:循环控制变量LOCATE-SHOPPINGMALL(W,n)1 D(0)=W2 for(1)3 for i=1 t0 n4 for j=1 t0 n56 (2)7 else8 (3)9 for i=1 to n10 sP[i] =O11 for j=1 to n12 (4)13 min sP=sP[1]14 (5)15 for i=2 t0 n16 if min sPsP[i]17 min sP=sP[i]18 min V=i19 return (6)
●迪杰斯特拉(Dijkstra)算法用于求解图上的单源点最短路径。该算法按路径长度递增次序产生最短路径,本质上说,该算法是一种基于(62)策略的算法。(62)A.分治B.动态规划C.贪心D.回溯
● 迪杰斯特拉(Dijkstra)算法用于求解图上的单源点最短路径。该算法按路径长度递增次序产生最短路径,本质上说,该算法是一种基于(61)策略的算法。 A.分治 B.动态规划 C.贪心 D.回溯
最短路径A.标号法求解单源点最短路径:vara:array[1..maxn,1..maxn] of integer;b:array[1..maxn] of integer; {b[i]指顶点i到源点的最短路径}mark:array[1..maxn] of boolean;procedure bhf;varbest,best_j:integer;
试题(10)距离向量路由算法要求每个节点保存一张距离向量表(即路由表),其中最关键的路由信息是 (10) 。(10)A. 源节点到目的节点的最短距离B. 源节点到目的节点的路径C. 本节点到目的节点的输出节点(下一节点)地址D. 本节点到目的节点的路径
距离向量路由算法要求每个节点保存一张距离向量表(即路由表),其中最关键的路由信息是( )。 A.源节点到目的节点的最短距离B.源节点到目的节点的路径C.本节点到目的节点的输出节点(下一节点)地址D.本节点到目的节点的路径
在AOE网络中关键路径叙述正确的是()。A.从开始顶点到完成顶点的具有最大长度的路径,关键路径长度是完成整个工程所需的最短时间B.从开始顶点到完成顶点的具有最小长度的路径,关键路径长度是完成整个工程所需的最短时间C.从开始顶点到完成顶点的具有最大长度的路径,关键路径长度是完成整个工程所需的最长时间D.从开始顶点到完成顶点的具有最小长度的路径,关键路径长度是完成整个工程所需的最长时间
()是基于单源点的最小费用路径算法。A、Dijksta算法和Floyd-Warshall算法B、Dijksta算法和Bellman-Ford算法C、Bellman-Ford算法和Floyd-Warshall算法D、Floyd-Warshall算法
单选题求解最短路径的Floyd算法的时间复杂度为( )。AO(n)BO(n+c)CO(n*n)DO(n*n*n)