混悬剂中使微粒Zeta电位降低的电解质是A.润湿剂B.反絮凝剂C.絮凝剂D.助悬剂E.稳定剂

混悬剂中使微粒Zeta电位降低的电解质是

A.润湿剂
B.反絮凝剂
C.絮凝剂
D.助悬剂
E.稳定剂

参考解析

解析:絮凝剂与反絮凝剂由于混悬剂微粒荷电,电荷的排斥力阻碍了微粒聚集。加入适量的电解质可使混悬微粒Zeta电位降低到一定程度,微粒形成疏松的絮状聚集体,使混悬剂处于稳定状态。形成絮状聚集体的过程称为絮凝,所加入的电解质称为絮凝剂。絮凝沉降物经振摇又可恢复均匀的混悬状态。

相关考题:

混悬剂中使微粒Zeta电位升高的电解质是()。A、润湿剂B、反絮凝剂C、絮凝剂D、助悬剂E、稳定剂

使微粒Zeta电位降低的电解质 查看材料

关于絮凝的错误表述是A、混悬剂的微粒荷电,电荷的排斥力会阻碍微粒的聚集B、加入适当电解质,可使~电位降低C、混悬剂的微粒形成絮状聚集体的过程称为絮凝D、为形成絮凝状态所加入的电解质称为反絮凝剂E、为了使混悬剂恰好产生絮凝作用,一般应控制电位在20~ 25mV范围内

使微粒Zeta电位降低的电解质A.稳定剂B.助悬剂C.润湿剂D.反絮凝剂E.絮凝剂

制备混悬剂时加入适量电解质的目的是A、调节制剂的渗透压B、增加混悬剂的离子强度C、使微粒的ξ电位增加,有利于稳定D、增加介质的极性,降低药物的溶解度E、使微粒的ξ电位降低,有利于稳定

使微粒Zeta电位降低的电解质( )。

助悬剂为()A、使微粒表面由固-气二相结合状态转成固-液 二相结合状态的附加剂B、使微粒Zeta电位增加的电解质C、使微粒Zeta电位降低的电解质D、增加分散介质粘度的附加剂

混悬剂中使微粒Zeta电位增加的电解质是A.润湿剂B.絮凝剂C.反絮凝剂D.助悬剂E.稳定剂

使微粒Zeta电位增加的电解质是A、助悬剂B、稳定剂C、润湿剂D、反絮凝剂E、絮凝剂

使微粒Zeta电位降低的电解质是A、助悬剂B、稳定剂C、润湿剂D、反絮凝剂E、絮凝剂

[49—52]A.助悬剂B.稳定剂C.润湿剂D.反絮凝剂E.絮凝剂49.使微粒表面由固一气二相结合转为固一液二相结合状态的附加剂是50.使微粒Zeta电位增加的电解质是51.增加分散介质黏度的附加剂是52.使微粒Zeta电位降低的电解质是

混悬剂中使微粒ξ电位降低的物质是A.助悬剂B.稳定剂C.润湿剂D.反絮凝剂E.絮凝剂

使微粒Zeta电位降低的电解质是( )

混悬剂中使微粒Zeta电位降低的电解质是( )。A、润湿剂B、反絮凝剂C、絮凝剂D、助悬剂E、稳定剂

混悬剂中使微粒ζ电位降低的物质是A:助悬剂B:稳定剂C:润湿剂D:反絮凝剂E:絮凝剂

混悬剂中使微粒电势降低的电解质是A:润湿剂B:反絮凝剂C:絮凝剂D:助悬剂E:稳定剂

混悬剂中使微粒Zeta电位降低的电解质是A.助悬剂B.稳定剂C.润湿剂D.反絮凝剂E.絮凝剂

关于微粒Zeta电位的说法,错误的是( )。A.从吸附层表面至反离子电荷为零处的电位差B.相同条件下微粒越小,Zeta电位越高C.加入絮凝剂可降低微粒的Zeta电位D.微粒Zeta电位越高,越容易絮凝E.某些电解质既可能降低Zeta电位,也可升高Zeta电位

混悬剂中使微粒ζ电势降低的电解质是A.润湿剂B.反絮凝剂C.絮凝剂D.助悬剂E.稳定剂

下列关于絮凝的叙述,正确的有()A加入适当电解质,可使ζ电位降低B为形成絮凝状态所加入的电解质称为絮凝剂C混悬剂的微粒形成絮状聚集体的过程称为絮凝D混悬剂的微粒带有的电荷的排斥力会阻碍微粒的聚集E为了使混悬剂恰好产生絮凝作用,一般应控制ζ电位在20~25mV范围内

混悬剂中使微粒ζ电位增加的物质是()A、助悬剂B、稳定剂C、润湿剂D、反絮凝剂E、絮凝剂

使微粒Zeta电位增加的电解质()A、助悬剂B、稳定剂C、润湿剂D、反絮凝剂E、絮凝剂

单选题混悬剂中使微粒Zeta电位降低的电解质是A润湿剂B反絮凝剂C絮凝剂D助悬剂E稳定剂

单选题使微粒Zeta电位增加的电解质( )A助悬剂B稳定剂C润湿剂D反絮凝剂E絮凝剂

单选题混悬剂中使微粒ζ电势降低的电解质是A润湿剂B反絮凝剂C絮凝剂D助悬剂E稳定剂

单选题下列哪种电解质在混悬剂中使微粒Zeta电位增加?(  )A助悬剂B润湿剂C絮凝剂D反絮凝剂E稳定剂

单选题制备混悬剂时加入适量电解质的目的是()。A调节制剂的渗透压B增加混悬剂的离子强度C使微粒的ξ电位增加,有利于稳定D增加介质的极性,降低药物的溶解度E使微粒的ξ电位降低,有利于稳定

单选题混悬剂中使微粒Zeta电位升高的电解质是()A润湿剂B反絮凝剂C絮凝剂D助悬剂E稳定剂