分子间氢键和分子内氢键的形成对化合物的熔、沸点有什么影响?举例并解释原因。

分子间氢键和分子内氢键的形成对化合物的熔、沸点有什么影响?举例并解释原因。


参考答案和解析
物质分子间氢键形成,使分子间作用力增强, 导致物质沸点和熔点升高。 物质分子内氢键形成,常使其比同类化合物 沸点和熔点降低。

相关考题:

β-OH蒽醌酸性强于α-OH,其原因是( )。A、α-OH与羰基形成分子内氢键B、β-OH空间效应大于α-OHC、α-OH间效应大于β-OHD、β-OH与羰基形成分子内氢键

乙醇沸点(78.3℃)与分子量相等的甲醚沸点(-23.4℃)相比高得多是由于()。 A、甲醚能与水形成氢键B、乙醇能形成分子间氢键,甲醚不能C、甲醚能形成分子间氢键,乙醇不能D、乙醇能与水形成氢键,甲醚不能

在分子间的氢键的作用下,物质的熔点和沸点会。A、升高B、降低C、不变D、不能确定

硝酸的沸点(86°C)比水的沸点(100°C)低很多,其原因是下列中哪种说法?A.硝酸分子量比水分子量大得多B.硝酸形成分子内氢键,水形成分子间氢键C.硝酸形成分子间氢键,水形成分子内氢键D.硝酸和水都形成分子间氢键

高中化学《氢键的形成》一、考题回顾教师提问:既然氢键是一种较强的分子间作用力,那么氢键的存在对物质的性质会有哪些影响呢?学生阅读课本回答:氢键的存在可以使物质的熔沸点升高,对物质的溶解度也有一定的影响,比如水和乙醇能以任意比例互溶。教师总结补充:在极性溶剂中,如果溶质分子和溶剂分子间能形成氢键,就会促进分子间的结合,导致溶解度增大。例如:由于乙醇分子与水分子间能形成不同分子间的氢键,故乙醇与水能以任意比互溶。

()的分子间存在氢键,所以沸点(),()不能形成分子间氢键,所以沸点()。

下列关于氢键的描述,错误的是()。A、氢键是一种较弱的有方向性和饱和性的化学键B、氢键可分为分子间氢键和分子内氢键C、氢键的作用力与分子间作用力相近D、氢键的形成将对物质的某些物理性质产生影响

下列关于分子间力的说法正确的是()A、分子型物质的沸点总是随分子量的增大而增加的B、大多数含氢化合物中都存在氢键;C、极性分子间仅存在取向力;D、色散力存在于所有相邻分子间

HF的沸点比HCl高,主要是由于前者()A、共价键牢固B、分子量小C、有色散力D、分子间有氢键E、诱导力

对羟基苯甲醛比邻羟基苯甲醛的熔沸点高的原因是()A、前者不能形成氢键,后者能形成氢键B、前者能形成氢键,后者不能形成氢键C、前者形成分子间氢键,后者形成分子内氢键;D、前者形成分子内氢键,后者形成分子间氢键

NH3的沸点高于PH3,是由于存在着()。A、共价键B、分子间氢键C、离子键D、分子内氢键

凡含氢的化合物,其分子间都形成氢键。

整个水分子是电中性的,为什么又是极性化合物分子?在液体状态,水分子间的氢键是如何形成的?

HF纯液体中存在的作用力是()。A、分子间力B、分子间力和氢键C、分子间力、氢键和离子键D、离子键

分子间氢键一般具有()性和()性,一般分子间形成氢键,物质的熔、沸点(),而分子内形成氢键,物质的熔、沸点往往()。

凡能形成分子间氢键的物质,其熔、沸点比同类物质的熔、沸点高。

下列化合物中,能形成分子间氢键的有()。A、甲醇B、乙烷C、苯D、乙醇

氟化氢分子之间的氢键键能比水分子之间的键能强,为什么水的熔、沸点反而比氟化氢的熔沸点低?

分子间和分子内氢键都使基团的振动频率向低频方向移动,但()氢键随浓度减小而消失,()氢键不受溶液浓度影响。

某化合物分子中含有易形成氢键的-OH基团,当其溶液稀释后-OH中质子的化学位移向高场移动,则可以推断此化合物易形成分子间氢键。

判断下列化合物中有无氢键存在,如果存在氢键,是分子间氢键还是分子内氢键? (1)C6H6 (2)C2H6 (3)NH3 (4)H3BO3 (5)邻硝基苯酚

单选题羧酸的沸点比分子量相近的烃,甚至比醇还高,主要原因是()。A分子极性;B酸性;C分子内氢键;D形成二缔合体。

问答题整个水分子是电中性的,为什么又是极性化合物分子?在液体状态,水分子间的氢键是如何形成的?

单选题硝酸的沸点(86℃)比水的沸点(100℃)低很多,其原因是下列中哪种说法()?A硝酸分子量比水分子量大得多B硝酸形成分子内氢键,水形成分子间氢键C硝酸形成分子间氢键,水形成分子内氢键D硝酸和水都形成分子间氢键

单选题HF纯液体中存在的作用力是()。A分子间力B分子间力和氢键C分子间力、氢键和离子键D离子键

填空题()的分子间存在氢键,所以沸点(),()不能形成分子间氢键,所以沸点()。

单选题乙醇的沸点(78℃)比乙醚的沸点(35℃)高得多,主要原因是(  )。A由于乙醇摩尔质量大B由于乙醚存在分子内氢键C由于乙醇分子间存在氢键D由于乙醇分子间取向力强

填空题分子间和分子内氢键都使基团的振动频率向低频方向移动,但()氢键随浓度减小而消失,()氢键不受溶液浓度影响。