8、K均值是一种产生划分聚类的基于密度的聚类算法,簇的个数由算法自动地确定。
8、K均值是一种产生划分聚类的基于密度的聚类算法,簇的个数由算法自动地确定。
参考答案和解析
错误
相关考题:
关于聚类算法K-Means和DBSCAN的叙述中,不正确的是( )。A.K-Means和DBSCAN的聚类结果与输入参数有很大的关系B.K-Means基于距离的概念而DBSCAN基于密度的概念进行聚类分析C.K-Means很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇D.当簇的密度变化较大时,DBSCAN不能很好的处理,而K-Means则可以
关于K均值和DBSCAN的比较,以下说法不正确的是()。A、K均值丢弃被它识别为噪声的对象,而DBSCAN一般聚类所有对象B、K均值使用簇的基于原型的概念,而DBSCAN使用基于密度的概念C、K均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇D、K均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇
K-means算法叙述正确的是()A、在K-means算法中K是事先给定的,这个K值的选定是非常难以估计的B、在K-means算法中,首先需要根据初始聚类中心来确定一个初始划分,然后对初始划分进行优化C、对于一个类中的每个对象,在其给定半径的领域中包含的对象不能少于某一给定的最小数目D、从K-means算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大的
K-means算法的叙述正确的是()A、在K-means算法中K是事先给定的,这个K值的选定是非常难以估计的B、在K-means算法中,首先需要根据初始聚类中心来确定一个初始划分,然后对初始划分进行优化C、对于一个类中的每个对象,在其给定半径的领域中包含的对象不能少于某一给定的最小数目的新的聚类心,因此当数据量非常大时,算法的时间开销是非常大的
以下是哪一个聚类算法的算法流程() ①构造k-最近邻图。 ②使用多层图划分算法划分图。 ③repeat:合并关于相对互连性和相对接近性而言,最好地保持簇的自相似性的簇。 ④until:不再有可以合并的簇。A、MSTB、OPOSSUMC、ChameleonD、Jarvis-Patrick(JP)
单选题下面关于Jarvis-Patrick(JP)聚类算法的说法不正确的是()。AJP聚类擅长处理噪声和离群点,并且能够处理不同大小、形状和密度的簇BJP算法对高维数据效果良好,尤其擅长发现强相关对象的紧致簇CJP聚类是基于SNN相似度的概念DJP聚类的基本时间复杂度为O(m)
判断题K均值是一种产生划分聚类的基于密度的聚类算法,簇的个数由算法自动地确定。A对B错