问答题存在严重共线性时,估计参数产生的后果有哪些?
问答题
存在严重共线性时,估计参数产生的后果有哪些?
参考解析
解析:
暂无解析
相关考题:
下列选项中判断正确的有()。A.在严重多重共线性下,OLS估计量仍是最佳线性无偏估计量。B.多重共线性问题的实质是样本现象,因此可以通过增加样本信息得到改善。C.虽然多重共线性下,很难精确区分各个解释变量的单独影响,但可据此模型进行预测。D.如果回归模型存在严重的多重共线性,可不加分析地去掉某个解释变量从而消除多重共线性。
对具有多重共线性的模型采用普通最小二乘法进行估计参数,会产生的不良后果有( )。A.完全共线性下参数估计量不存在B.参数估计量不具有有效性C.近似共线性下普通最小二乘法参数估计量的方差变大D.参数估计量经济含义不合理E.变量的显著性检验和模型的预测功能失去意义
如果模型中解释变量之间存在共线性,则会引起如下后果()A、 参数估计值确定B、 参数估计值不确定C、 参数估计值的方差趋于无限大D、 参数的经济意义不正确E、 DW统计量落在了不能判定的区域
K-Means聚类法要求自变量之间不存在共线性,是因为()A、变量存在多重共线性时无法得到聚类结果B、变量存在多重共线性时无法解释聚类结果C、变量存在多重共线性时,相关变量会在距离计算中占据很高的权重,从而对聚类结果有负面的影响D、变量存在多重共线性时,得到的聚类结果是完全错误的
下列关于异方差性、自相关性和多重共线性的说法,正确的有()。A、当存在异方差性、自相关性和多重共线性时,都会导致参数显著性检验失去意义B、当存在异方差性、自相关性和多重共线性时,利用普通最小二乘法的估计量都存在C、当存在异方差性、自相关性和多重共线性时,仍然可以进行模型预测D、当存在异方差性、自相关性和多重共线性时,如果参数估计量存在,那么都具有有效性E、当存在异方差性、自相关性和多重共线性时,都可以通过一定的方法进行补救
对具有多重共线性的模型采用普通最小二乘法估计参数,会产生的不良后果有()。A、完全共线性下参数估计量不存在B、参数估计量不具有有效性C、近似共线性下普通最小二乘法参数估计量的方差变大D、参数估计量的经济意义不合理E、变量的显著性检验和模型的预测功能失去意义
单选题K-Means聚类法要求自变量之间不存在共线性,是因为()A变量存在多重共线性时无法得到聚类结果B变量存在多重共线性时无法解释聚类结果C变量存在多重共线性时,相关变量会在距离计算中占据很高的权重,从而对聚类结果有负面的影响D变量存在多重共线性时,得到的聚类结果是完全错误的
多选题在回归分析中存在多重共线性时将会产生的问题包括()。A参数估计值不精确,也不稳定Bt检验失效C参数估计式的符号与其经济意义相反D区间估计失去意义