单选题在有向图的逆邻接表中,每个顶点邻接表链接着该顶点所有()邻接点。A入边B出边C入边和出边D不是出边
单选题
在有向图的逆邻接表中,每个顶点邻接表链接着该顶点所有()邻接点。
A
入边
B
出边
C
入边和出边
D
不是出边
参考解析
解析:
暂无解析
相关考题:
● 邻接矩阵和邻接表是图(网)的两种基本存储结构,对于具有 n个顶点、e条边的图, (59) 。(59)A. 进行深度优先遍历运算所消耗的时间与采用哪一种存储结构无关B. 进行广度优先遍历运算所消耗的时间与采用哪一种存储结构无关C. 采用邻接表表示图时,查找所有顶点的邻接顶点的时间复杂度为O(n*e)D. 采用邻接矩阵表示图时,查找所有顶点的邻接顶点的时间复杂度为O(n2)
广度优先遍历的含义是:从图中某个顶点v出发,在访问了v之后依次访问v的各个未被访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,且“先被访问的顶点的邻接点”先于“后被访问的顶点的邻接点”被访问,直至图中所有已被访问的顶点的邻接点都被访问到。(38)是下图的广度优先遍历序列。A.1 2 6 34 5B.1 2 34 5 6C.1 6 5 2 34D.1 64 52 3
阅读下列函数说明和C函数,将应填入(n)处的字句写在对应栏内。[说明]邻接表是图的一种顺序存储与链式存储结合的存储方法。其思想是:对于图G中的每个顶点 vi,将所有邻接于vi的顶点vj连成一个单链表,这个单链表就称为顶点vi的邻接表,其中表头称作顶点表结点VertexNode,其余结点称作边表结点EdgeNode。将所有的顶点表结点放到数组中,就构成了图的邻接表AdjList。邻接表表示的形式描述如下: define MaxVerNum 100 /*最大顶点数为100*/typedef struct node{ /*边表结点*/int adjvex; /*邻接点域*/struct node *next; /*指向下一个边表结点的指针域*/ }EdgeNode;typedef struct vnode{ /*顶点表结点*/int vertex; /*顶点域*/EdgeNode *firstedge; /*边表头指针*/}VertexNode;typedef VertexNode AdjList[MaxVerNum]; /*AdjList是邻接表类型*/typedef struct{AdjList adjlist; /*邻接表*/int n; /*顶点数*/}ALGraph; /*ALGraph是以邻接表方式存储的图类型*/深度优先搜索遍历类似于树的先根遍历,是树的先根遍历的推广。下面的函数利用递归算法,对以邻接表形式存储的图进行深度优先搜索:设初始状态是图中所有顶点未曾被访问,算法从某顶点v出发,访问此顶点,然后依次从v的邻接点出发进行搜索,直至所有与v相连的顶点都被访问;若图中尚有顶点未被访问,则选取这样的一个点作起始点,重复上述过程,直至对图的搜索完成。程序中的整型数组visited[]的作用是标记顶点i是否已被访问。[函数]void DFSTraverseAL(ALGraph *G)/*深度优先搜索以邻接表存储的图G*/{ int i;for(i=0;i<(1);i++) visited[i]=0;for(i=0;i<(1);i++)if((2)) DFSAL(G,i);}void DFSAL(ALGraph *G,int i) /*从Vi出发对邻接表存储的图G进行搜索*/{ EdgeNode *p;(3);p=(4);while(p!=NULL) /*依次搜索Vi的邻接点Vj*/{ if(! visited[(5)]) DFSAL(G,(5));p=p->next; /*找Vi的下一个邻接点*/}}
某有向图G的邻接表如下图所示,可看出该图中存在弧,而不存在从顶点Vi出发的弧。关于图G的叙述中,错误的是()。A.G中存在回路B.G中每个顶点的入度都为1C.G的邻接矩阵是对称的D.G中不存在弧瓜
填空题有向图G用邻接表矩阵存储,其第i行的所有元素之和等于顶点i的()。