单选题一完全竞争的厂商现能生产产品Q=100,其价格P=5,总成本=200,其规模收益不变,则为了获得更多的利润,企业将()。A进行技术创新B将价格定为6C扩大生产规模,以期在长期内获得超额利润D将价格定为4
单选题
一完全竞争的厂商现能生产产品Q=100,其价格P=5,总成本=200,其规模收益不变,则为了获得更多的利润,企业将()。
A
进行技术创新
B
将价格定为6
C
扩大生产规模,以期在长期内获得超额利润
D
将价格定为4
参考解析
解析:
思路:完全竞争厂商是市场价格的接受者,任何改变价格以求利润最大的做法都是徒劳的;在长期内,完全竞争厂商无经济利润可言,通过技术创新提高了劳动生产率,其平均成本曲线随之下移,在价格一定的情况下,将获得更多利润。
相关考题:
一完全竞争的厂商现能生产产品Q=100,其价格P=5,总成本=200,其规模收益不变,则为了获得更多的利润,企业将()。A.进行技术创新B.将价格定为6C.扩大生产规模,以期在长期内获得超额利润D.将价格定为4
计算题:已知某完全竞争的成本不变行业中的单个厂商的长期总成本函数LTC=Q3-12Q2+40Q。试求:(1)当市场商品价格为P=100时,厂商实现MR=LMC时的产量,平均成本和利润;(2)该行业长期均衡时的价格和单个厂商的产量;(3)当市场的需求函数为Q=660-15P时,行业长期均衡时的厂商数量。
某成本不变的完全竞争行业的代表性厂商的长期总成本函数为LTC=Q3-60Q2+1500Q,产品价格P=975美元,市场需求函数为P=9600-2Q,试求:(1)利润极大时的产量、平均成本和利润。(2)该行业长期均衡时的价格和厂商的产量。(3)用图形表示上述(1)和(2)。(4)若市场需求曲线是P=9600-2Q,试问长期均衡中留存于该行业的厂商人数是多少?
已知某完全竞争的成本不变行业中的单个厂商的长期总成本函数LTC=Q3-12Q2+40Q。试求:(1)当市场商品价格是P=100,厂商实现MR=LMC时的产量,平均成本和利润;(2)该行业长期均衡时的价格和单个厂商的产量;(3)市场的需求函数为Q=660-15P时,行业长期均衡时的厂商数量。
已知完全竞争市场上单个厂商的长期成本函数为LTC=Q3-20Q2+200Q,市场的产品价格为P=600。 求:(1)该厂商实现利润最大化时的产量、平均成本和利润各是多少? (2)该行业是否处于长期均衡,为什么?(3)该行业处于长期均衡时每个厂商的产量、平均成本和利润各是多少? (4)判断(1)中的厂商是处于规模经济阶段,还是处于规模不经济阶段?
在完全竞争的市场上,已知某厂商的产量是100单位,总收益是100元,总成本是300元,总不变成本为200元,边际收益为2元,按照利润最大化原则,该厂商应该( )。A.增加产量B.减少产量C.停止生产D.既可继续生产,也可停止生产
一个完全竞争的厂商每年获得1000利润,其规模收益是不变的。() A.在长期,它可以通过半加一倍投入获得加倍的利润B.当利润开始削减时,它可以提高价格C.在长期,它可以获得相同的利润D.当有厂商进入这个行业时,它将得不到利润E.上述说法均不准确
在完全竞争的市场上,已知某厂商的产量是100单位,总收益是100元,总成本是300元,总不变成本为200元,边际收益为2元,按照利润最大化原则,该厂商应该()。A:增加产量B:减少产量C:停止生产D:既可继续生产,也可停止生产
甲企业的产品在市场上占据垄断地位,该企业有两个工厂都能生产这种产品,其成本函数为Cl=3+2Q1+5Q12,C2=5+30Q2 +Q22。甲企业估计其短期面临的产品需求曲线为P=30-2(Q1+ Q2),请问:甲企业在各个工厂应该生产多少?其将获得多少利润?
假定某垄断厂商生产一种产品,其总成本函数为TC=0.SQ2 +10Q +5,市场的反需求函数为P=70 -2Q: (1)求该厂商实现利润最大化时的产量、产品价格和利润量。 (2)如果要求该垄断厂商遵从完全竞争原则,那么,该厂商实现利润最大化时的产量、产品价格和利润量又是多少? (3)试比较(1)和(2)的结果,你可以得出什么结论?
已知某完全竞争的成本不变行业中的单个厂商的长期总成本函数为LTC= Q3 - 12Q2+40Q。试求: (1)当市场产品价格为P=100时,厂商实现MR= LMC时的产量、平均成本和利润。 (2)该行业长期均衡时的价格和单个厂商的产量。 (3)当市场的需求函数为Q=660 -15P时,行业长期均衡时的厂商数量。
考虑一个双寡头古诺模型,p和Q分别表示市场价格和产品销售总量;q1和q2分别表示厂商1和厂商2的产量;MC表示厂商生产的边际成本,假设两个厂商生产的产品完全同质。 如果两个厂商的生产均面临不变的边际成本1/2,且反需求曲线为p=1-Q,则均衡时两个企业的产量分别是多少?
假设某完全竞争行业有200个相同的企业,企业的短期成本函数为TC =0. 2Q2+Q+15,市场需求函数为Qp= 2475 - 95P,厂商的长期总成本函数为LTC=0.1Q3-1. 2Q2+11.1Q,求: (1)市场短期均衡价格、产量及厂商利润。 (2)市场长期均衡价格与产量。 (3)说明是否会有厂商退出经营。
一个完全竞争行业中的一个典型厂商,其长期总成本函数为LTC =q3- 60q2+1500q,其中成本的单位为元,q为月产量. (1)推导出其长期平均成本和长期边际成本函数。 (2)若产品市场价格为975元,为实现利润最大化,厂商的产量将是多少? (3)厂商在(2)中的均衡是否与行业均衡并存? (4)若市场的需求曲线为P=9600 -Q,在长期均衡中,该行业将有多少厂商?
假定某完全竞争行业内单个厂商的短期总成本函数为STC=Q3—8Q2+22Q+90,产品的价格为P=34, (1)求单个厂商实现利润最大化时的产量和利润量: (2)如果市场供求变化使得产品价格下降为P=22,那么,厂商的盈亏状况将如何?如果亏损,亏损额是多少?(保留整数部分) (3)在(2)的情况下,厂商是否还会继续生产?为什么?
一厂商分别向东西部两个市场销售Q1与Q2单位的产品。已知厂商的总成本函数为C=5+3(Q1+Q2),东部市场对该产品的需求函数为P1=15-Q1,西部市场对该产品的需求函数为P2=25一2Q2。 如果该厂商可以将东西部市场区分开,在不同的市场制定不同的价格出售,求该厂商利润最大化时的P1、P2、Q1、Q2以及边际收益、总利润。
分析竞争市场上企业的下列两种情况: TC=100+15q (1)假设TC=100+15q,其中TC是总成本,q是产量。短期中这家企业生产任何产量所要求的最低价格是多少? (2)假设MC=4q,其中MC是边际成本。该完全竞争企业通过生产10单位产品实现了利润最大化。它按什么价格出售这些产品?
问答题已知某厂商的生产函数为Q=0.5L1/3K2/3;当资本投入量K=50时资本的总价值为500;劳动的价格PL=5。求: (1)劳动的投入函数L=L(Q); (2)总成本函数、平均成本函数和边际成本函数; (3)当产品的价格P=100时,厂商获得最大利润的产量和利润各是多少?
问答题已知某完全竞争的成本不变行业中的单个厂商的长期总成本函数LTC=Q3-12Q2+40Q。试求:(1)当市场商品价格是P=100,厂商实现MR=LMC时的产量,平均成本和利润;(2)该行业长期均衡时的价格和单个厂商的产量;(3)市场的需求函数为Q=660-15P时,行业长期均衡时的厂商数量。