0/1背包问题的动态规划算法是多项式时间算法。
0/1背包问题的动态规划算法是多项式时间算法。
参考答案和解析
C
相关考题:
考虑一个背包问题,共有n=5个物品,背包容量为W=10,物品的重量和价值分别为:w={2,2,6,5,4},v={6,3,5,4,6},求背包问题的最大装包价值。若此为0-1背包问题,分析该问题具有最优子结构,定义递归式为其中c(i,j)表示i个物品、容量为j的0-1背包问题的最大装包价值,最终要求解c(n,W)。 采用自底向上的动态规划方法求解,得到最大装包价值为(62),算法的时间复杂度为(63)。 若此为部分背包问题,首先采用归并排序算法,根据物品的单位重量价值从大到小排序,然后依次将物品放入背包直至所有物品放入背包中或者背包再无容量,则得到的最大装包价值为(64),算法的时间复杂度为(65)。A.11B.14C.15D.16.67
关于0-1背包问题以下描述正确的是()A、可以使用贪心算法找到最优解B、能找到多项式时间的有效算法C、使用教材介绍的动态规划方法可求解任意0-1背包问题D、对于同一背包与相同的物品,做背包问题取得的总价值一定大于等于做0-1背包问题
对于0-1背包问题和背包问题的解法,下面()答案解释正确。A、0-1背包问题和背包问题都可用贪心算法求解B、0-1背包问题可用贪心算法求解,但背包问题则不能用贪心算法求解C、0-1背包问题不能用贪心算法求解,但可以使用动态规划或搜索算法求解,而背包问题则可以用贪心算法求解D、因为0-1背包问题不具有最优子结构性质,所以不能用贪心算法求解
举反例证明0/1背包问题若使用的算法是按照pi/wi的非递减次序考虑选择的物品,即只要正在被考虑的物品装得进就装入背包,则此方法不一定能得到最优解(此题说明0/1背包问题与背包问题的不同)。
求多项式A(x)的算法可根据下列两个公式之一来设计:⑴A(x)=anxn+an-1xn-1+…+a1x+a0⑵A(x)=(…(anx+an-1)x+…+a1)x)+a0根据算法的时间复杂度分析比较这两种算法的优劣。
问答题举反例证明0/1背包问题若使用的算法是按照pi/wi的非递减次序考虑选择的物品,即只要正在被考虑的物品装得进就装入背包,则此方法不一定能得到最优解(此题说明0/1背包问题与背包问题的不同)。
单选题关于0-1背包问题以下描述正确的是()A可以使用贪心算法找到最优解B能找到多项式时间的有效算法C使用教材介绍的动态规划方法可求解任意0-1背包问题D对于同一背包与相同的物品,做背包问题取得的总价值一定大于等于做0-1背包问题
问答题求多项式A(x)的算法可根据下列两个公式之一来设计:⑴A(x)=anxn+an-1xn-1+…+a1x+a0⑵A(x)=(…(anx+an-1)x+…+a1)x)+a0根据算法的时间复杂度分析比较这两种算法的优劣。
单选题下列算法中不能解决0/1背包问题的是()A贪心法B动态规划C回溯法D分支限界法