傅里叶级数包含一个恒定分量和无穷多个正弦谐波分量。

傅里叶级数包含一个恒定分量和无穷多个正弦谐波分量。


参考答案和解析
正确

相关考题:

已知f(t)是周期为T的函数,f(t)-f(t+2.5T)的傅里叶级数中,不可能有________。 ;A.正弦分量B.余弦分量C.奇次谐波分量D.偶次谐波分量

傅里叶级数中的系数表示谐波分量的( )。 A: 相位B: 周期C: 振幅D: 频率

一般周期信号可以利用傅里叶级数展开成()不同频率的谐波信号的线性叠加。 A、两个B、多个乃至无穷多个C、偶数个D、奇数个

傅里叶级数展开中,包含正弦分量,则原信号必为奇函数。() 此题为判断题(对,错)。

傅里叶算法是数字信号处理的一个重要工具,它源于傅里叶级数。这种算法一般需要二个周波的数据窗长度,它可以滤去各整次谐波,包括直流分量,滤波效果较好。() 此题为判断题(对,错)。

已知f(t)是周期为T的函数,f(t)-f(t+(5/2)T)的傅里叶级数中,不可能的是()。 A、正弦分量B、余弦分量C、奇次谐波分量D、偶次谐波分量

若周期信号f(t)是时间t的奇函数,则其三角形傅里叶级数展开式中()。 A.没有余弦分量B.既有正弦分量和余弦分量,又有直流分量C.既有正弦分量和余弦分量D.仅有正弦分量

某周期为0.02s的非正弦周期信号,分解成傅里叶级数时,角频率为300πrad/s的项被称为( )。A.三次谐波分量B.六次谐波分量C.基波分量D.五次谐波分量

一个非正弦周期信号,利用傅里叶级数展开一般可以分解为( )。A.直流分量B.基波分量C.振幅分量D.谐波分量

316)傅里叶算法可以滤去多次谐波,但受输入模拟量中非周期分量的影响较大。( )

关于谐波分析,下列说法正确的是( )A.一个非正弦周期波可分解为无限多项谐波成分,这个分解的过程称为谐波分析B.谐波分析的数学基础是傅里叶级数C.所谓谐波分析,就是对一个已知波形的非正弦周期信号,找出它所包含的各次谐波分量的振幅和频率,写出其傅里叶级数表达式的过程D.方波的谐波成分中只含有正弦成分的各偶次谐波

傅里叶算法可以滤去多次谐波,但受输入模拟量中非周期分量的影响较大。( )

()是指对周期性非正弦交流量进行傅里叶级数分解所得到的大于基波频率整数倍的各次分量。A谐波B基波C偶次谐波D奇次谐波

非正弦波交流电的每一个正弦分量,称为它的一个谐波分量,简称谐波。

Acos(√31t)的傅里叶三角函数形式级数中的正弦分量幅值bn=()

一个重复频率为F的非正弦周期信号的频谱包含有()A、频率为F的整数倍的无穷多个频率分量B、频率为F的一个频率分量C、频率为F以外的无穷多个频率分量D、无穷多个连续的频率分量

任意给出几种常见的非正弦周期信号波形图,你能否确定其傅里叶级数展开式中有无恒定分量()A、不能B、能C、不确定

某周期偶函数f(t),其傅立叶级数中()。A、不含正弦分量B、不含余弦分量C、仅有奇次谐波分量D、仅有偶次谐波分量

所谓谐波分析,就是对一个已知()的非正弦周期信号,找出它所包含的各次谐波分量的()和(),写出其傅里叶级数表达式的过程。

某周期为0.02s的非正弦周期信号,分解成傅里叶级数时,角频率为300πrad/s的项称为()。A、三次谐波分量B、六次谐波分量C、基波分量D、高次谐波分量

某周期偶谐函数,其傅立叶级数中()。A、无正弦分量B、无余弦分量C、无奇次谐波分量D、无偶次谐波分量

某周期奇谐函数,其傅立叶级数中()。A、无正弦分量B、无余弦分量C、仅有基波和奇次谐波分量D、仅有基波和偶次谐波分量

奇函数加上直流后,傅氏级数中仍含有正弦分量。

对于一个非正弦的周期量,可利用傅里叶级数展开为各种不同频率的正弦分量与直流分量,其中角频率等于ωt的称为基波分量, 角频率等于或大于2ωt的称为高次谐波。

填空题Acos(√31t)的傅里叶三角函数形式级数中的正弦分量幅值bn=()

多选题数字式保护算法中,全波傅里叶算法能滤除( )。A纯直流分量B基波分量C整次谐波分量D非整次谐波分量

单选题某周期为0.02s的非正弦周期信号,分解成傅里叶级数时,角频率为300πrad/s的项称为()。A三次谐波分量B六次谐波分量C基波分量D高次谐波分量

单选题某周期偶函数f(t),其傅立叶级数中()A不含正弦分量B不含余弦分量C仅有奇次谐波分量D仅有偶次谐波分量