一批产品共有十个正品和2个次品。任意抽取两次,每次抽取一个后不再放回。则第二次抽取的是次品的概率是()。A、1/5B、六分之一C、十一分之一D、十二分之一
一批产品共有十个正品和2个次品。任意抽取两次,每次抽取一个后不再放回。则第二次抽取的是次品的概率是()。
- A、1/5
- B、六分之一
- C、十一分之一
- D、十二分之一
相关考题:
一批产品包括10件正品,3件次品(1)不放回地抽取,每次一件,直到取得正品为止,假定每件产品被取到的机会相同,求抽取次数的概率分布列。(2)每次取出一件产品后,总以一件正品放回去,直到取得正品为止,求抽取次数的概率分布列。
某轴承厂有甲、乙、丙三个车间,各车间生产的轴承数量分别占全厂的40%、30%、 30%,各车间的次品率分别为3%、4%、5%(正品率分别为97%、96%、95%)。以上叙述如下图所示。在图中,从“厂”结点出发选择三个车间产品的概率分别为0.4、0.3、0.3,从各“车间”结点出发选择“正品”或“次品”的概率如图所示。从“厂”结点出发,到达“正品”(或“次品”)结点,可以有多条路径。例如,路径“厂—甲一次品”表示该厂甲车间生产的次品,其概率P(厂一甲一次品)应等于各段上的概率之积。而该厂总的次品率应等于从“厂”结点到达“次品”结点的所有路径算出的概率之和(全概率公式)。而其中每条路径算出的概率在总概率中所占的比例,就是已知抽取产品结果再推测其来源(路径)的概率(逆概率公式)。根据以上描述,可以算出,该厂的正品率约为(53)。如果上级抽查取出了一个次品,那么该次品属于甲车间生产的概率约为(54)。A.0.963B.0.961C.0.959D.0.957
10件产品中4件为次品,6件为正品,现抽取2件产品. (1)求第一件为正品,第二件为次品的概率; (2)在第一件为正品的情况下,求第二件为次品的概率; (3)逐个抽取,求第二件为正品的概率.
10件产品有3件次品,7件正品,每次从中任取一件,取后不放回,求下列事件的概率: (1)第三次取得次品; (2)第三次才取得次品; (3)已知前两次没有取到次品,第三次取得次品;(4)不超过三次取到次品.
事件A为“随机抽取3件产品,且至少有一件是正品”,事件B为“随机抽取3件产品,且有两件正品一件次品”,那么( )。A.事件A与事件B互不相容 B.事件A与事件B互相独立C.事件A与事件B互相对立 D.事件A包含事件B
总体有5个单位,现在欲采用不放回简单随机抽样抽取样本量为2的一个样本,即抽取两个单位,因抽取是独立的,所以每次抽选的概率及总体各单元最终入样概率为()。A、2/5,1/5B、1/5,2/5C、1/5,1/5D、2/5,2/5
设工厂A和工厂B的产品的次品率分别是1%和2%,现在从由A和B的产品分别是60%和40%的产品中随机抽取一件,发现是次品,则该次品属于A生产的概率是()A、2/7B、3/7C、2/9D、1/5
单选题已知一批产品的次品率为4%,从中有放回地抽取5个,则5个产品中没有次品的概率为()A0.815B0.17C0.014D0.999