设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有() A、k≤3B、k3C、k=3D、k3

设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()

A、k≤3

B、k3

C、k=3

D、k3


相关考题:

设A为n阶实对称矩阵,则(). A.A的n个特征向量两两正交B.A的n个特征向量组成单位正交向量组C.A的k重特征值λ0,有r(λ0E-A)=n-kD.A的k重特征值λ。,有r(λ0E-A)=k

设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().A.矩阵A不可逆B.矩阵A的迹为零C.特征值-1,1对应的特征向量正交D.方程组AX=0的基础解系含有一个线性无关的解向量

设A是n阶矩阵,且Ak=O(k为正整数),则( )。A.A一定是零矩阵B.A有不为0的特征值C.A的特征值全为0D.A有n个线性无关的特征向量

已知三维列向量a,β满足aTβ,设3阶矩阵A=βaT,则:A. β是A的属于特征值0的特征向量B. a是A的属于特征值0的特征向量C. β是A的属于特征值3的特征向量D. a是A的属于特征值3的特征向量

设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是(  )。A、λ1=0B、λ2=0C、λ1≠0D、λ2≠0

设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为a1,a2,则a1,A(a1+a2)线性无关的充分必要条件是( )。A.λ1=0B.λ2=0C.λ1≠0D.λ2≠0

设矩阵A为n阶实矩阵,n为奇数,则下列叙述正确的是________A.矩阵A一定有实特征值B.矩阵A可能有复特征值C.矩阵A有n个线性无关的特征向量D.矩阵A线性无关的特征向量个数可能少于n

2、设A是n阶对称矩阵,则A的对应于k重特征值的特征向量必有k个是线性无关的.

1. 下列有关特征值和特征向量的说法正确的是()A.0不能为矩阵的特征值B.若det(A+E)=0, 则1为A的特征值C.线性无关的两个特征向量必属于不同的特征值D.属于每个特征值的特征向量必有无穷多个