问答题假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者下降30%。无风险报酬率为每年4%。拟利用复制原理,建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得该组合1年后的价值与购进该看涨期权相等。 要求:期权的价值为多少?
问答题
假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者下降30%。无风险报酬率为每年4%。拟利用复制原理,建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得该组合1年后的价值与购进该看涨期权相等。 要求:
期权的价值为多少?
参考解析
解析:
暂无解析
相关考题:
假设甲公司股票的现行市价为20元,有1股以该股票为标的资产的看涨期权,执行价格为22.25元。到期时间为8个月,分为两期,每期4个月,每期股价有两种可能:上升25%或下降20%。无风险利率为每个月0.5%。要求:(1)计算8个月后各种可能的股票市价以及期权到期日价值;(2)按照风险中性原理计算看涨期权的现行价格。
甲公司股票当前市价为 20元,有一种以该股票为标的资产的 6个月到期的看涨期权,执行价格为 25元,期权价格为 4元,则( )。A.该看涨期权的内在价值是0B.该期权是虚值期权C.该期权的时间溢价为9D.该看涨期权的内在价值是-5
假设该公司的股票现在市价为45元。有1股以该股票为标的资产的看涨期权,执行价格为48元,到期时间是6个月。6个月以后股价有两种可能:上升33.33%,或者下降25%,年无风险报价利率为4%,则利用复制原理确定期权价格时,下列说法错误的有( )。A.股价上行时期权到期日价值12元B.套期保值比率为0.8C.购买股票支出20.57元D.以无风险利率借入14元
假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者降低30%。无风险利率为每年4%。要求:利用单期二叉树定价模型确定期权的价值。
某公司股票目前的市价为40元,有1份以该股票为标的资产的欧式看涨期权(1份期权包含1股标的股票),执行价格为42元,到期时间为6个月。6个月以后股价有两种可能:上升20%或者下降25%,则套期保值比率为( )。A.0.33B.0.26C.0.42D.0.28
假设ABC 公司的股票现在的市价为60 元。有1 股以该股票为标的资产的看涨期权,执行价格为65 元,到期时间是6 个月。6 个月以后股价有两种可能:上升22.56%或者降低18.4%。无风险报酬率为每年4%,假设该股票不派发红利,则利用风险中性原理计算期权价值过程中涉及的下列数据,不正确的是( )。A.股价上行时期权到期日价值为8.536 元B.期望报酬率为4%C.下行概率为0.5020D.期权的现值为4.1675 元
假设ABC公司的股票现在的市价为60元。6个月以后股价有两种可能:上升33.33%,或者降低25%。有1股以该股票为标的资产的看涨期权,在利用复制原理确定其价值时,如果已知股价下行时的到期日价值为0,套期保值比率为0.6,则该期权的执行价格为( )元。A.80B.60C.59D.62
假设ABC 公司的股票现在的市价为80 元。有1 股以该股票为标的资产的看涨期权,执行价格为85 元,到期时间6 个月。6 个月以后股价有两种可能:上升33.33%,或者降低25%。无风险报酬率为每年4%。则使用套期保值原理估算出该看涨期权价值为( )元。A.21.664B.37.144C.27.31D.9.834
甲公司股票当前市价为 20 元, 有一种以该股票为标的资产的 6 个月到期的看涨期权, 执行价格为 25 元, 期权价格为 4 元, 该看涨期权的内在价值是( ) 元。A.0B.1C.4D.5
ABC公司的股票目前的股价为10元,有1股以该股票为标的资产的欧式看涨期权,执行价格为10元,期权价格为2元,到期时间为6个月。假设年无风险利率为4%,计算1股以该股票为标的资产、执行价格为10元、到期时间为6个月的欧式看跌期权的价格;
ABC公司的股票目前的股价为10元,有1股以该股票为标的资产的欧式看涨期权,执行价格为10元,期权价格为2元,到期时间为6个月。若到期日ABC公司的股票市价是每股15元,计算卖出期权的净损益;
ABC公司的股票目前的股价为10元,有1股以该股票为标的资产的欧式看涨期权,执行价格为10元,期权价格为2元,到期时间为6个月。若3个月后ABC公司的股票市价是每股9元,计算3个月后期权的内在价值;
假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者下降30%。无风险报酬率为每年4%。拟利用复制原理,建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得该组合1年后的价值与购进该看涨期权相等。 要求:计算利用复制原理所建组合中股票的数量为多少?
假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者下降30%。无风险报酬率为每年4%。拟利用复制原理,建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得该组合1年后的价值与购进该看涨期权相等。 要求:若期权价格为4元,建立一个套利组合。
假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者下降30%。无风险报酬率为每年4%。拟利用复制原理,建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得该组合1年后的价值与购进该看涨期权相等。 要求:期权的价值为多少?
问答题ABC公司的股票目前的股价为10元,有1股以该股票为标的资产的欧式看涨期权,执行价格为10元,期权价格为2元,到期时间为6个月。假设年无风险利率为4%,计算1股以该股票为标的资产、执行价格为10元、到期时间为6个月的欧式看跌期权的价格;
问答题假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者降低30%。无风险利率为每年4%。要求:利用单期二叉树定价模型确定期权的价值。
单选题假设ABC公司的股票现在的市价为40元。有1股以该股票为标的资产的看涨期权,执行价格为45元,到期时间6个月。6个月以后股价有两种可能:上升20%,或者降低16.67%。无风险利率为每年8%,则上行概率为( )。A67.27%B56.37%C92.13%D73.54%
问答题ABC公司的股票目前的股价为10元,有1股以该股票为标的资产的欧式看涨期权,执行价格为10元,期权价格为2元,到期时间为6个月。若到期日ABE公司的股票市价是每股15元,计算买入期权的净损益;
问答题假设ABC公司的股票现在的市价为30元。有1份以该股票为标的资产的看涨期权,执行价格为30.5元,到期时间是6个月。6个月以后股价有两种可能:上升35%,或者下降20%。无风险利率为每年4%。拟利用复制原理,建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得该组合6个月后的价值与购进该看涨期权相等。期权的价值为多少?
单选题假设ABC公司的股票现在的市价为56.26元。有1股以该股票为标的资产的看涨期权,执行价格为62元,到期时间是6个月。6个月以后股价有两种可能:上升42.21%,或者下降29.68%。无风险利率为每年4%,则利用风险中性原理所确定的期权价值为()元。A7.78B5.93C6.26D4.37
问答题假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者下降30%。无风险利率为每年4%。要求:利用风险中性原理确定期权的价值。
问答题假设A公司的股票现在的市价为30元。有1份以该股票为标的资产的看涨期权和1份以该股票为标的资产的看跌期权,执行价格均为32元,到期时间是1年。根据股票过去的历史数据所测算的连续复利报酬率的标准差为1,无风险报酬率为每年4%。执行价格为32元的1年的A公司股票的看跌期权售价是多少(精确到0.0001元)?
单选题假设LC公司的股票现在的市价为40元。一年以后股价有两种可能:上升33. 33%或者降低25%。有1股以该股票为标的资产的看涨期权,在利用复制原理确定其价格时,如果已知该期权的执行价格为20元,则套期保值比率为( )。A1.45B1C0.42D0.5