阅读以下说明和算法,完善算法并回答问题。【说明】假设以二维数组G[1..m,1..n)表示一幅图像各像素的颜色,则G[i,j]表示区域中点(i,j)处的颜色,颜色值为0~k的整数。下面的算法将指定点(i0,j0)所在的同色邻接区域的颜色置换为给定的颜色值。约定所有与点(i0,j0)同色的上、下、左、右可连通的点组成同色邻接区域。例如,一幅8×9像素的图像如图2-1所示。设用户指定点(3,5),其颜色值为0,此时其上方(2,5)、下方(4,5)、右方(3,6)邻接点的颜色值都为0,因此这些点属于点(3,5)所在的同色邻接区域,再从上、下、左、右四个方向进行扩展,可得出该同色邻接区域的其他点(见图2-1中的阴影部分)。将上述同色区域的颜色替换为颜色值7所得的新图像如图2-2所示。【算法】输入:矩阵G,点的坐标(i0,j0),新颜色值newcolor。输出:点(i0,j0)所在同色邻接区域的颜色置换为newcolor之后的矩阵G。算法步骤(为规范算法,规定该算法只在第七步后结束)如下。第一步:若点(i0,j0)的颜色值与新颜色值newcolor相同,则(1);第二步:点(i0,j0)的颜色值→oldcolon创建栈S,并将点坐标(i0,j0)入栈;第三步;若(2),则转第七步;第四步;栈顶元素出栈→(x,y),并(3);第五步;1)若点(x,y-1)在图像中且G[x,y-1]等于oldcolor,则(x,y-1)入栈S;2)若点(x,y+1)在图像中且GIx,y+1]等于oldeolor,则(x,y+1)入栈S;3)若点(x-1,y)在图像中且G[x-1,y)等于oldcolor,则(x-1,y)入栈S;4)若点(x+1,y)在图像中且G[x+1,y)等于oldcolor,则(x+1,y)入栈S;第六步:转(4);第七步:算法结束。【问题】是否可以将算法中的栈换成队列?回答;(5) 。

阅读以下说明和算法,完善算法并回答问题。

【说明】

假设以二维数组G[1..m,1..n)表示一幅图像各像素的颜色,则G[i,j]表示区域中点(i,j)处的颜色,颜色值为0~k的整数。

下面的算法将指定点(i0,j0)所在的同色邻接区域的颜色置换为给定的颜色值。约定所有与点(i0,j0)同色的上、下、左、右可连通的点组成同色邻接区域。

例如,一幅8×9像素的图像如图2-1所示。设用户指定点(3,5),其颜色值为0,此时其上方(2,5)、下方(4,5)、右方(3,6)邻接点的颜色值都为0,因此这些点属于点(3,5)所在的同色邻接区域,再从上、下、左、右四个方向进行扩展,可得出该同色邻接区域的其他点(见图2-1中的阴影部分)。将上述同色区域的颜色替换为颜色值7所得的新图像如图2-2所示。

【算法】

输入:矩阵G,点的坐标(i0,j0),新颜色值newcolor。

输出:点(i0,j0)所在同色邻接区域的颜色置换为newcolor之后的矩阵G。

算法步骤(为规范算法,规定该算法只在第七步后结束)如下。

第一步:若点(i0,j0)的颜色值与新颜色值newcolor相同,则(1);

第二步:点(i0,j0)的颜色值→oldcolon创建栈S,并将点坐标(i0,j0)入栈;

第三步;若(2),则转第七步;

第四步;栈顶元素出栈→(x,y),并(3);

第五步;1)若点(x,y-1)在图像中且G[x,y-1]等于oldcolor,则(x,y-1)入栈S;

2)若点(x,y+1)在图像中且GIx,y+1]等于oldeolor,则(x,y+1)入栈S;

3)若点(x-1,y)在图像中且G[x-1,y)等于oldcolor,则(x-1,y)入栈S;

4)若点(x+1,y)在图像中且G[x+1,y)等于oldcolor,则(x+1,y)入栈S;

第六步:转(4);

第七步:算法结束。

【问题】

是否可以将算法中的栈换成队列?回答;(5) 。


相关考题:

阅读下列程序说明和C代码,把应填入其中n处的字句写在答卷的对应栏内。【说明】程序利用选择排序算法对数组a中的N个整数按照从小到大的顺序排列,并将排序结果显示出来。【程序】define N 10main(){void (1);int i,a[N];for(i=0;i<10,i++) /*输入*/scanf(“%d”,a[i]);(2);for(i=0;i<N,i++) /*输出*/printf(“%3d”,a[i]);}void selectSon(int x[],int n){int i,j,k,t;for(int i=0; (3);i++){k=i;for(j=i+1;j<n;j++)if (4) k=j;if (5){t=x[i];x[i]=x[k];x[k] =t;}}}

设二维数组A[1..m,1..n](即m行n列)按行存储在数组B[1..m*n]中,则二维数组元素A[i,j]在一维数组B中的下标为()。 A.(i-1)*n+jB、(i-1)*n+j-1C.i*(j-1)D、j*m+i-1

阅读以下说明和算法,完善算法并回答问题,将解答写在对应栏内。[说明]假设以二维数组G[1..m,1..n]表示一幅图像各像素的颜色,则G[i,j]表示区域中点(i,j]处的颜色,颜色值为0到k的整数。下面的算法将指定点(i0,j0)所在的同色邻接区域的颜色置换为给定的颜色值。约定所有与点(i0,j0)同色的上、下、左、右可连通的点组成同色邻接区域。例如,一幅8×9像素的图像如图1-1所示。设用户指定点(3,5),其颜色值为0,此时其上方(2,5)、下方(4,5)、右方(3,6)邻接点的颜色值都为0,因此这些点属于点(3,5)所在的同色邻接区域,再从上、下、左、右四个方向进行扩展,可得出该同色邻接区域的其他点(见图1-1中的阴影部分)。将上述同色区域的颜色替换为颜色值7所得的新图像如图1-2所示。[算法]输入:矩阵G,点的坐标(i0,j0),新颜色值newcolor。输出:点(i0,j0)所在同色邻接区域的颜色置换为newcolor之后的矩阵G。算法步骤(为规范算法,规定该算法只在第七步后结束):第一步:若点(i0,j0)的颜色值与新颜色值newcolor相同,则(1);第二步:点(i0,j0)的颜色值→oldcolor;创建栈S,并将点坐标(i0,j0)入栈;第三步:若(2),则转第七步;第四步:栈顶元素出栈→(x,y),并(3);第五步:1) 若点(x,y-1)在图像中且G[x,y-1]等于oldcolor,则(x,y-1)入栈S;2) 若点(x,y+1)在图像中且G[x,y+1]等于oldcolor,则(x,y+1)入栈S;3) 若点(x-1,y)在图像中且G[x-1,y]等于oldcolor,则(x-1,y)入栈S;4) 若点(x+1,y)在图像中且G[x+1,y)等于oldcolor,则(x+1,y)入栈S:第六步:转(4);第七步:算法结束。[问题]是否可以将算法中的栈换成队列?回答:(5)。

●试题一阅读以下算法说明和流程图,回答问题1和问题2。【算法说明】下面是一段插入排序的程序,将R[k+1]插入到R[1…k]的适当位置。R[0]=R[k+1];j=k;while (R[j]R[0]){R[j+1]=R[j];j--;}R[j+1]=R[0];【流程图】【测试用例设计】(while循环次数为0、1、2次)【问题1】指出算法的流程图中 (1) ~ (3) 处的内容。【问题2】指出测试用例设计中 (4) ~ (9) 处的内容。

试题一(共 15分)阅读以下说明和算法,完善算法并回答问题,将解答写在答题纸的对应栏内。[说明]假设以二维数组G[1..m,1..n]表示一幅图像各像素的颜色,则G[i,j]表示区域中点(i,j)处的颜色,颜色值为0到k 的整数。下面的算法将指定点(i0,j0)所在的同色邻接区域的颜色置换为给定的颜色值。约定所有与点(i0,j0)同的上、下、左、右可连通的点组成同色邻接区域。例如,一幅8×9 像素的图像如图1-1 所示。设用户指定点(3,5),其颜色值为0,此时其上方(2,5)、下方 (4,5)、右方(3,6)邻接点的颜色值都为0,因此这些点属于点(3,5)所在的同色邻接区域,再从上、下、左、右四个方向进行扩展,可得出该同色邻接区域的其他点(见图1-1 中的阴影部分)。将上述同色区域的颜色替换为颜色值7所得的新图像如图1-2 所示。[算法]输入:矩阵 G,点的坐标(i0,j0),新颜色值newcolor。输出:点(i0,j0)所在同色邻接区域的颜色置换为newcolor之后的矩阵G。算法步骤(为规范算法,规定该算法只在第七步后结束):第一步:若点(i0,j0)的颜色值与新颜色值newcolor相同,则(1) ;第二步:点(i0,j0)的颜色值→oldcolor;创建栈S,并将点坐标(i0,j0)入栈;第三步:若 (2) ,则转第七步;第四步:栈顶元素出栈→(x,y),并(3) ;第五步:1) 若点(x,y-1)在图像中且G[x,y-1]等于oldcolor,则(x,y-1)入栈S;2) 若点(x,y+1)在图像中且G[x,y+1]等于oldcolor,则(x,y+1)入栈S;3) 若点(x-1,y)在图像中且G[x-1,y]等于oldcolor,则(x-1,y)入栈S;4) 若点(x+1,y)在图像中且G[x+1,y]等于oldcolor,则(x+1,y)入栈S;第六步:转 (4) ;第七步:算法结束。[问题]是否可以将算法中的栈换成队列?回答: (5) 。

阅读下列说明和C代码,回答问题,将解答填入答题纸的对应栏内。【说明】计算一个整数数组a的最长递增子序列长度的方法描述如下:假设数组a的长度为n,用数组b的元素b[i]记录以a[i](0≤i<n)为结尾元素的最长递增子序列的长度为 ;其中b[i]满足最优子结构,可递归定义为:【C代码】下面是算法的C语言实现。(1)常量和变量说明a:长度为n的整数数组,待求其最长递增子序列b:长度为n的数组,b[i]记录以a[i](0≤ilen:最长递增子序列的长度i, j:循环变量temp:临时变量(2)C程序#include int maxL(int*b, int n) {int i, temp=0;for(i=0; itemp) temp=b[i]; } return temp;}int main() { int n,a[100], b[100], i, j, len; scanf("%d", for(i=0;i【问题1】(8分)根据说明和C代码,填充C代码中的空(1)~(4)。【问题2】(4分) 根据说明和C代码,算法采用了 (5) 设计策略,时间复杂度为 (6) (用O符号表示)。【问题3】(5分) 已知数组a={3,10,5,15,6,8},据说明和C代码,给出数组b的元素值。

阅读下列说明和C代码,回答下列问题。[说明] 计算一个整数数组a的最长递增子序列长度的方法描述如下: 假设数组a的长度为n,用数组b的元素b[i]记录以a[i](0≤i<n”)为结尾元素的最长递增子序列的长度为其中b[i]满足最优子结构,可递归定义为: [C代码] 下面是算法的C语言实现。 10常量和变量说明 a:长度为n的整数数组,待求其最长递增子序列 b:长度为n的数组,b[i]记录以a[i](0≤i<n”)为结尾元素的最长递增子序列的长度,其中0≤i<n len:最长递增子序列的长度 i,j:循环变量 temp:临时变量 11C程序 # jnclude<stdio,h> mtmaxL(int*b,mt n) { mt I, temp=0 for(i=0; i<n; i++) { (b[i]>temp) temp=b[i] return temp; int main12 { int n,a[100],b[100],i,j,len; scanf(" % d", for(i=0;i<n;i++) { scanf("% d", ___1___: for(i=1;i<n;i++) { for(j=0,len=0;___2___;j++){ if( ___3___ } Printf("len:% d\n",maxL(b,n)) Primtf("\n") }1~4、 根据说明和C代码,填充C代码中的空______~______。5、 根据说明和C代码,算法采用了______设计策略,时间复杂度为______(用O符号表示)6、 已知数组a={3,10,5,15,6,8},据说明和C代码,给出数组b的元素值。

1、 以下算法是某个重要算法的一个版本,阅读后请求出该算法的时间效率,同时分析该算法有哪些重要缺陷,该如何弥补。 算法 GE(A[0..n-1,0..n-1]) for iß0 to n-2 do for jßi+1 to n-1 do for kßn downto i do A[j,k]ßA[j,k]-A[I,k]*A[j,i]/A[I,i]

2、以下算法是某个重要算法的一个版本,阅读后请求出该算法的时间效率,同时分析该算法有哪些重要缺陷,该如何弥补。 算法 GE(A[0..n-1,0..n-1]) for iß0 to n-2 do for jßi+1 to n-1 do for kßn downto i do A[j,k]ßA[j,k]-A[I,k]*A[j,i]/A[I,i]