阅读以下说明和流程图,回答问题,将解答填入对应栏内。[流程图][说明]把指定区间上的所有整数分解质因数,每一整数表示为质因数按从小到大顺序排列的乘积形式。如果被分解的数本身是素数,则予以注明。例如,90=2×3× 3×5,91=素数。下面的流程图描述了分解质因数的过程。对每一个被分解的整数j,赋值给b(以保持判别运算过程中j不变),用K (从2开始递增1取值)试商,若不能整除,打印输出“*k”,b除以k的商赋给b(b=b/k)后继续用k试商(注意,可能有多个k因数),直至不能整除,k增1继续。将流程图中的(1)~(5)处补充完整。
阅读以下说明和流程图,回答问题,将解答填入对应栏内。
[流程图]
[说明]
把指定区间上的所有整数分解质因数,每一整数表示为质因数按从小到大顺序排列的乘积形式。如果被分解的数本身是素数,则予以注明。例如,90=2×3× 3×5,91=素数。
下面的流程图描述了分解质因数的过程。对每一个被分解的整数j,赋值给b(以保持判别运算过程中j不变),用K (从2开始递增1取值)试商,若不能整除,打印输出“*k”,b除以k的商赋给b(b=b/k)后继续用k试商(注意,可能有多个k因数),直至不能整除,k增1继续。
将流程图中的(1)~(5)处补充完整。
相关考题:
阅读以下说明,回答问题,将解答填入对应的解答栏内。[说明] 将一个正整数分解质因数。例如:输入90,打印出90=2*3*3*5。main ( ){int n, i;printf ( "\n please input a number: \n");scanf ( "% d" ,u);printf ( "%d =" ,n);for((1)){while((2)){if((3)){ printf ("%d*",i);(4)}elsebreak;}}printf (“%d”,n);}
阅读以下说明和流程图,回答问题1~2,将解答填入对应的解答栏内。[说明]下面的流程图描述了计算自然数1到N(N≥1)之和的过程。[流程图][问题1] 将流程图中的(1)~(3)处补充完整。[问题2] 为使流程图能计算并输出1*3+2*4+…+N*(N+2)的值,A框内应填写(4);为使流程图能计算并输出不大于N的全体奇数之和,B框内应填写(5)。
阅读以下说明和流程图,填补流程图中的空缺(1)~(9),将解答填入对应栏内。【说明】假设数组A中的各元素A(1),A(2),…,A(M)已经按从小到大排序(M≥1);数组B中的各元素B(1),B(2),…,B(N)也已经按从小到大排序(N≥1)。执行下面的流程图后,可以将数组A与数组B中所有的元素全都存入数组C中,且按从小到大排序 (注意:序列中相同的数全部保留并不计排列顺序)。例如,设数组A中有元素:2,5, 6,7,9;数组B中有元素2,3,4,7:则数组C中将有元素:2,2,3,4,5,6,7, 7, 9。【流程图】
阅读以下说明和流程图,回答问题1-2,将解答填入对应的解答栏内。[说明]下面的流程图采用欧几里得算法,实现了计算两正整数最大公约数的功能。给定正整数m和 n,假定m大于等于n,算法的主要步骤为:(1)以n除m并令r为所得的余数;(2)若r等于0,算法结束;n即为所求;(3)将n和r分别赋给m和n,返回步骤(1)。[流程图][问题1] 将流程图中的(1)~(4)处补充完整。[问题2] 若输入的m和n分别为27和21,则A中循环体被执行的次数是(5)。
阅读以下说明和流程图,回答问题,并将解答填入对应栏内。【说明】求解约瑟夫环问题。算法分析:n个士兵围成一圈,给他们依次编号,班长指定从第w个士兵开始报数,报到第s个士兵出列,依次重复下去,直至所有士兵都出列。【流程图】【问题】将流程图中的(1)~(5)处补充完整。
第一题 阅读以下说明和流程图,填补流程图中的空缺,将解答填入答题纸的对应栏内。【说明】对于大于1的正整数n,(x+1)n可展开为问题:1.1 【流程图】注:循环开始框内应给出循环控制变量的初值和终值,默认递增值为1。格式为:循环控制变量=初值,终值,递增值。
将一个大于1的正整数分解质因数。例如:输入90,打印出 90=2*3*3*5