图示曲柄连杆机构中,OA=r,AB=2r,OA、AB及滑块B质量均为m,曲柄以ω的角速度绕O轴转动,则此时系统的动能为:

图示曲柄连杆机构中,OA=r,AB=2r,OA、AB及滑块B质量均为m,曲柄以ω的角速度绕O轴转动,则此时系统的动能为:



参考解析

解析:提示:杆AB瞬时平移,杆OA做定轴转动,滑块B为质点,分别根据动能的定义求解。

相关考题:

均质细直杆AB长为l,质量为m,以匀角速度ω绕O轴转动,如图所示,则AB杆的动能为:

一平面机构曲柄长OA=r,以角速度ω0绕O轴逆时针向转动,在图示瞬时,摇杆O1N水平,连杆NK铅直。连杆上有一点D,其位置为DK=1/3NK,则此时D点的速度大小vD为:

图示杠OA=l,绕定轴O以角速度ω转动,同时通过A端推动滑块B沿轴x运动,设分析运动的时间内杆与滑块并不脱离,则滑块的速度vB的大小用杆的转角ψ与角速度ω表示为:

在图示定平面Oxy内,杆OA可绕轴O转动,杆AB在点A与杆OA铰接,即杆AB可绕点A转动。该系统称为双摆,其自由度数为:A.1个B.2个C.3个D.4个

曲柄机构在其连杆AB的中点C与CD杆铰接,而CD杆又与DF杆铰接,DE杆可绕E点转动。曲柄OA以角速度ω= 8rad/s绕O点逆时针向转动。且OA = 25cm,DE=100cm。在图示瞬时,O、A、B三点共在一水平线上,B、E两点在同一铅直线上,∠CDE=90°,则此时DE杆角速度ωDE的大小和方向为:

均质细直杆OA长为l,质量为m,A端固结一质量为m的小球(不计尺寸),如图所示。当OA杆以匀角速度绕O轴转动时,该系统对O轴的动量矩为:

图示质量为m、长为l的杆OA以的角速度绕轴O转动,则其动量为:

图示四连杆机构OABO1中,OA=O1B=1/2AB=L,曲柄OA以角速度ω逆时针向转动。当φ=90%,而曲柄O1B重合于O1O的延长线上时,曲柄O1B上B点速度vB的大小和方向为:

均质细直杆OA的质量为m,长为l,以匀角速度W绕O轴转动如图所示,此时将OA杆的惯性力系向O点简化。其惯性力主矢和惯性力主矩的数值分别为(  )。

如图所示,曲柄OA长R,以匀角速度ω绕O轴转动,均质圆轮B在水平面上做纯滚动,其质量为m,半径为r。在图示瞬时,OA杆铅直。圆轮B对接触点C的动量矩为(  )mRrω。A.0.5B.1.0C.1.5D.2.0

曲柄OA在如图30-9所示瞬时以ω的角速度绕轴O转动,并带动直角曲杆O1BC在如图所示平面内运动。若取套筒A为动点,杆O1BC为动系,则牵连速度大小为(  )。

均质直角曲杆OAB的单位长度质量为ρ,OA=AB=2l,图示瞬时以角速度ω、角加速度α绕轴O转动,该瞬时此曲杆对O轴的动量矩的大小为:

在图机构中,曲柄OA以匀角速度ω0转动,且OA=r,又AB=AC=r。当曲柄OA与连杆AB位于同一铅垂线上时,OA⊥0C,此时连杆AB的角速度为(  )。

均质细直杆OA长为l ,质量为m,A端固结一质置为m的小球(不计尺寸),如图所示。当OA杆以匀角速度w绕O轴转动时,该系统时O轴的动量矩为:

T形均质杆OABC以匀角速度ω绕O轴转动,如图所示。已知OA杆的质量为2m,长为2l,BC杆质量为m,长为l,则T形杆在图示位置时动量的大小为:

圆盘某瞬时以角速度ω,角加速度α绕O轴转动,其上A、B两点的加速度分别为aA和aB,与半径的夹角分别为θ和φ。若OA=R,OB=R/2,则aA与aB,θ与φ的关系分别为:A.aA=aB,θ=φB. aA=aB,θ=2φC. aA=2aB,θ=φD. aA=2aB,θ=2φ

如图4-71所示曲柄连杆机构中,OA=r,AB=2r,OA、 AB及滑块B质量均为m, 曲柄以ω的角速度绕O轴转动,则此时系统的动能为( )。

图4-49所示机构中,曲柄OA以匀角速度绕O轴转动,滚轮B沿水平面作纯滚动,如图4-48所示。己知OA=l, AB=2l,滚轮半径为r。在图示位置时,OA铅直,滚轮B的角速度为( )。

如图4-57所示质量为m、长为l 的杆OA以ω的角速度绕轴O转动,则其动量为 ( )。

均质细直杆AB长为l,质量为m,以匀角速度ω绕O轴转动,如图4-69所示, 则AB杆的动能为( )。

单选题质量为2m,半径为R的偏心圆板可绕通过中心O的轴转动,偏心距OC= 。在OC连线上的A点固结一质量为m的质点,OA=R如图示。当板以角速度w绕轴O转动时,系统动量K的大小为()。(注:C为圆板的质心)。A K=0B K=mRwC K=mRwD K=2mRw