一个木制正方体在表面涂上颜色,将它的每条棱三等分,然后从等分点将正方体展开,得到27个小正方体,将这些小正方体充分混合后,装入一个口袋,从这个口袋中随机取出两个小正方体,其中一个正方体只有一个面涂有颜色,另一个只有2个面涂有颜色的概率约为( )A. 0.05B. 0.17C. 0.34D. 0.67
一个木制正方体在表面涂上颜色,将它的每条棱三等分,然后从等分点将正方体展开,得到27个小正方体,将这些小正方体充分混合后,装入一个口袋,从这个口袋中随机取出两个小正方体,其中一个正方体只有一个面涂有颜色,另一个只有2个面涂有颜色的概率约为( )
A. 0.05
B. 0.17
C. 0.34
D. 0.67
B. 0.17
C. 0.34
D. 0.67
参考解析
解析:涂一面的6个 涂2面的12个 满足条件情况72个,经计算为0.34
相关考题:
把一个64cm×40cm×24cm的长方体切成若干个完全相同的小正方体,并使这些小正方体的表面积总和最小,则小正方体的表面积总和为( )。A.73280cm2B.54680cm2C.69450cm2D.46080cm2
有64个边长为l厘米的同样大小的小正方体, 其中34个为白色的,30个为黑色的。现将它们拼成一个4×4×4的大正方体, 在大正方体的表面上白色部分最多可以是多少平方厘米?( )A.52B.64C.72D.74
把一个64Cmx40Cmx24Cm的长方体切成若干个完全相同的小正方体,并使这些小正方体的表面积总和最小,则小正方体的表面积总和为( )。A.73280cm2B.54680cm2C.69450cm2D.46080cm2
一块各面均涂有油漆的正方体被锯成1000个同样大小的小正方体,将这些小正方体均匀地搅混在一起,随机地取出一个小正方体,其两面涂有油漆的概率是:A.0.12 B.0.096C.0.072 D.0.064
在棱长为1的正方体上切下两个角,所形成的两个截面为大小相等的正三角形。两个角组成了一个六面体,六面体体积为原正方体体积的1/24,则六面体表面积为原正方体表面积的:A.1/4B.1/6C.1/8D.1/10
一个木制正方体在表面涂上颜色,将它的每条棱三等分,然后从等分点将正方体展开,得到27个小正方体,将这些小正方体充分混合后,装入一个口袋,从这个口袋中随机取出两个小正方体,其中一个正方体只有一个面涂有颜色,另一个只有2个面涂有颜色的概率约为( )A. 0.05B. 0.17C. 0.34D. 0.67
1000个体积为1立方厘米的小正方体合在一起成为一个边长为10厘米的大正方体,大正方体表面涂油漆后,再分开为原来的小正方体,这些小正方体至少有一面被油漆涂过的数目是多少个:A 490B 488C 484D 480
有一批边长为1厘米的小正方体,其中一面涂红色的有400个,相邻两面涂红色的有30个,相邻三面涂红色的有1个,其余小正方体各面都没有涂颜色。用这一批小正方体组成一个大正方体,要求这个大正方体有三个面是红色,且这三个面两两相邻,其余的三个面没有颜色。假如没有涂颜色的小正方体数量足够多,那么这个正方体的边长最大是( )厘米。A.10B.11C.12D.13
将2个棱长为30厘米的正方体木块的六面分别全涂成黑色后,都锯成棱长为10厘米的小正方体,问从这些小正方体中随机抽取出多少个,才能保证一定能够在取出的小立方体中挑出8个,拼成外表面全为黑色的,棱长为20厘米的正方体?A. 27B. 36C. 40D. 46
一千个体积为1立方厘米的小正方体合在一起成为一个边长为10厘米的大正方体,大正方体表面涂油漆后再分开为原来的小正方体,这些小正方体至少有一面被油漆涂过的数目是( )个。A.490B.488C.484D.480
将一个8厘米×8厘米×1厘米的白色长方体木块的外表面涂上黑色颜料,然后将其切成64个棱长1厘米的小正方体,再用这些小正方体堆成棱长4厘米的大正方体,且使黑色的面向外露的面积要尽量大,问大正方体的表面上有多少平方厘米是黑色的? A. 88B. 84C. 96D. 92
有64个棱长为1厘米的同样大小的小正方体,其中34个为白色的,30个为黑色的。现将它们拼成一个4X4X4的大正方体,在大正方体的表面上白色部分最多可以是多少平方厘米?( )A. 52 B. 64 C. 72 D. 74
边长为4的正方体木块,各面均涂成红色,将其锯成64个边长为1的小正方体,并将它们搅匀混在一起,随机取出一个小正方体,恰有两面为红色的概率是( )。