若已知力F对直角坐标系原点O的力矩矢的大小∣MO(F)∣,方向沿 Oy向,则此力对此坐标系中各轴的矩为()A、Mx(F)=0, My(F)=0,Mz(F)=0;B、Mx(F)=0,M y(F)= ∣MO(F)∣,Mz(F) =∣MO (F)∣;C、Mx(F)=0,My(F)= ∣MO(F)∣,MZ(F)=0;D、Mx(F)=0,My(F)=0, Mz(F)= ∣MO(F)∣。

若已知力F对直角坐标系原点O的力矩矢的大小∣MO(F)∣,方向沿 Oy向,则此力对此坐标系中各轴的矩为()

  • A、Mx(F)=0, My(F)=0,Mz(F)=0;
  • B、Mx(F)=0,M y(F)= ∣MO(F)∣,Mz(F) =∣MO (F)∣;
  • C、Mx(F)=0,My(F)= ∣MO(F)∣,MZ(F)=0;
  • D、Mx(F)=0,My(F)=0, Mz(F)= ∣MO(F)∣。

相关考题:

承受预紧力F′的紧螺栓连接在受工作拉力F时,残余预紧力为F〃,其螺栓所受的总拉力F0为()。 A.F0=F+F′B.F0=F+F〃C.F0=F′+F〃D.F0=F

对一路信号进行FSK调制时,若载波频率为f0,调制后的信号频率分别为f1和f2(f1>f2),则f0、f1、f2三者的关系是(22)。A.f2-f1=f0B.f2+f1=f0C.f1/f2=f0D.f0-f2=f1-f0

设函数 f (x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有 f ' (x) >0, f '' (x) >0,则在(- ∞ ,0)内必有:(A) f ' > 0, f '' > 0 (B) f ' 0(C) f ' > 0, f ''

设函数f(x)具有二阶连续导数,且f(x)>0,f'(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是 A.Af(0)>1,f"(0)>0B.f(0)>1,f"(0)C.f(0)0D.f(0)

图4所示某平面平衡力系作用在平面Oxy内,问下述哪组方程是该力系的独立平衡方程( )。A、∑MA(F)=0,∑MB(F)=0,∑MC(F)=0B、∑MA(F)=0,∑MB(F)=0,∑Mo(F)=0C、∑Fx=0,∑Fy=0,∑FAB=0D、∑MA(F)=0,∑Mo(F)=0,∑Fy=0

若函数f(-x)=-f(x) (-∞0,f(x)A. f(x)>0, f(x)0C. f(x)>0, f(x)>0 D.f(x)

设函数f(x)在(-∞,+∞)上是奇函数,在(0,+∞)内有f'(x)<0, f''(x)>0,则在(-∞,0)内必有:A. f'>0, f''>0B.f'<0, f''<0C. f'<0, f''>0D. f'>0, f''<0

设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有:A. f'(x)>0, f''(x)>0B.f'(x)<0, f''(x)>0C. f'(x)>0, f''(x)<0D. f'(x)<0, f''(x)<0

力F对O点之矩,记作( )。A.Mo(F)=FdB.Mo(F)=±FdC.Mo(F)=-FdsinaD.Mo(F)=±Fdcosa

在图5中,某空间力系满足∑Fx=0,∑Fy=0,∑Mx=0,∑Mz=0,∑Fz≠0,∑My≠0,则下述哪些结果是正确的: 若力系向A点简化:( )A、可能有F'R≠0,MA=0B、可能有F'R=0,MA≠0C、可能有F'R=0,MA=0D、一定有MA≠0

若f(-x)=f(x),且在(0,+∞)内f′(x)>0,f″(x)<0,则f(x)在(-∞,0)内( )。《》( )A.f′(x)<0,f″(x)<0B.f′(x)<0,f″(x)>0C.f′(x)>0,f″(x)<0D.f′(x)>0,f″(x)>0

若f(x)=-f(-x),在(0,+∞)内f′(x)>0,f″(x)>0,则在(-∞,0)内( )《》( )A.f′(x)<f″(x)<0B.f′(x)<f″(x)>0C.f′(x)>f″(x)<0D.f′(x)>f″(x)>0

计算摩擦力时,若物体静止时其静摩擦力的大小在()之间。A、0<F=FmaxB、0≤F≤FmaxC、0=F<FmaxD、0≤F≥Fmax

若力F与z轴相交,则Mz(F)=0。

已知f(t),为求f(t0-at)则下列运算正确的是(其中t0,a为正数)()A、f(-at)左移t0B、f(-at)右移C、f(at)左移t0D、f(at)右移

平面汇交力系平衡方程是()。A、∑X=0B、∑Y=0C、∑mo(F)=0D、∑X+∑y=0E、∑F=0

已知力F在z轴上的投影是z=0,对z轴的力矩MZ≠0,F的作用线与z轴()。A、垂直相交B、垂直不相交C、不垂直相交D、不垂直也不相交

平面汇交力系平衡的解析条件是()。A、∑F。=0B、∑F,=0C、∑F。=0D、∑Mx=0E、∑M,=0

设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)0,f"(x)0,则在(-∞,0)内必有()。A、f'(x)0,f"(x)0B、f'(x)0,f"(x)0C、f'(x)O,f"(x)0D、f'(x)0,f"(x)0

设有一个力F,当力F与()轴()但()时有力F在X轴上的投影FX=0,力F对x轴之矩mx(F)≠0

若已知力F对直角坐标系原点O的力矩矢的大小∣MO(F)∣,方向沿Oy向,则此力对此坐标系中各轴的矩为()。A、Mx(F)=0, My(F)=0,Mz(F)=0B、Mx(F)=0,M y(F)= ∣MO(F)∣,Mz(F) =∣MO (F)∣C、Mx(F)=0,My(F)= ∣MO(F)∣,MZ(F)=0D、Mx(F)=0,My(F)=0, Mz(F)= ∣MO(F)∣

单选题设函数f(x)满足关系式f″(x)+[f′(x)]2=x,且f′(0)=0,则(  )。Af(0)是f(x)的极大值Bf(0)是f(x)的极小值C点(0,f(0))是曲线y=f(x)的拐点Df(0)不是f(x)的极值,点(0,f(0))也不是曲线y=f(x)的拐点

多选题平面汇交力系平衡的解析条件是()。A∑F。=0B∑F,=0C∑F。=0D∑Mx=0E∑M,=0

单选题若f(-x)=-f(x)(-∞<x<+∞),且在(-∞,0)内f′(x)>0,f″(x)<0,则f(x)在(0,+∞)内是(  )。[2013年真题]Af′(x)>0,f″(x)<0Bf′(x)<0,f″(x)>0Cf′(x)>0,f″(x)>0Df′(x)<0,f″(x)<0

单选题若f(x)=-f(-x),在(0,+∞)内f′(x)>0,f″(x)>0,则在(-∞,0)内(  )。Af′(x)<0,f″(x)<0Bf′(x)<0,f″(x)>0Cf′(x)>0,f″(x)<0Df′(x)>0,f″(x)>0

单选题(2013)若f(-x)=-f(x)(-∞0,f″(x)0,则f(x)在(0,+∞)内是:()Af′(x)0,f″(x)0Bf′(x)0,f″(x)0Cf′(x)0,f″(x)0Df′(x)0,f″(x)0

单选题设f(x)在(-∞,+∞)可导,x0≠0,(x0,f(x0))是y=f(x)的拐点,则(  )。Ax0必是f′(x)的驻点B(-x0,-f(x0))必是y=-f(-x)的拐点C(-x0,-f(x0))必是y=-f(x)的拐点D对∀x>x0与x<x0,y=f(x)的凸凹性相反

多选题平面汇交力系平衡方程是()。A∑X=0B∑Y=0C∑mo(F)=0D∑X+∑y=0E∑F=0