单选题F[x]中,有f(x)g(x)=h(x)成立,若将xy代替x可以得到什么?()Af(xy)g(xy)=h(2xy)Bf(xy)g(xy)=h(xy)Cf(xy)+g(xy)=h(xy)D[fx+gx]y=hxy

单选题
F[x]中,有f(x)g(x)=h(x)成立,若将xy代替x可以得到什么?()
A

f(xy)g(xy)=h(2xy)

B

f(xy)g(xy)=h(xy)

C

f(xy)+g(xy)=h(xy)

D

[fx+gx]y=hxy


参考解析

解析: 暂无解析

相关考题:

设f(x),g(x),h(x)均为奇函数,则()中所给定的函数是偶函数。 A、f(x)g(x)h(x)B、[f(x)+g(x)]h(x)C、f(x)+g(x)D、f(x)+g(x)+h(x)

设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。 A. [f(x)/g(x)]>[f(a)/g(b)] B. [f(x)/g(x)]>[f(b)/g(b)] C. f(x)g(x)>f(a)g(a) D. f(x)g(x)>f(b)g(b)

如果∫df(x)=∫dg(x),则下列各式中哪一个不一定成立?()A、f(x)=g(x)B、f′(x)=g′(x)C、df(x)=dg(x)D、d∫f′(x)dx=d∫g′(x)dx

互素多项式的性质,(f(x),h(x))=1,(g(x),h(x))=1,则有(f(x)g(x),h(x))=1成立。

在F[x]中从p(x)|f(x)g(x)可以推出什么?()A、p(x)B、p(x)C、p(x)D、g(x)f(x)

F[x]中,有f(x)g(x)=h(x)成立,若将xy代替x可以得到什么?()A、f(xy)g(xy)=h(2xy)B、f(xy)g(xy)=h(xy)C、f(xy)+g(xy)=h(xy)D、[fx+gx]y=hxy

互素多项式的性质,若f(x)|g(x)h(x),且(f(x),g(x))=1,那么可以推出什么?()A、g(x)B、h(x)C、f(x)g(x)D、f(x)

若f(x)|g(x)h(x)且(f(x),g(x))=1则()。A、g(x)B、h(x)C、f(x)D、f(x)

设f(x),g(x)∈F[x],若f(x)=0则有什么成立?()A、deg(f(x)g(x))B、deg(f(x)g(x))>max{degf(x),degg(x)}C、deg(f(x)+g(x))>max{degf(x),degg(x)}D、deg(f(x)+g(x))=max{degf(x),degg(x)}

互素多项式的性质,若f(x)|h(x),g(x)|h(x),且(f(x),g(x))=1,那么可以推出什么?()A、f(x)g(x)B、h(x)C、h(x)D、g(x)

在F[x]中,有f(x)+g(x)=h(x)成立,若将x用矩阵A代替,将有f(A)+g(A)≠h(A)。

在F[x]中,有f(x)+g(x)=h(x)成立,若将x用矩阵x+c代替,可以得到什么?()A、f(xc)+g(xc)=h(x+c)B、f(x+c)g(x+c)=ch(x)C、[f(x)+g(x)]c=h(x+c)D、f(x+c)+g(x+c)=ch(x)

若f′(x)=g′(x),则下列哪个式子成立()?A、f(x)=g(x)B、f(x)g(x)C、f(x)D、f(x)=g(x)+cc为任意常数

设K是个数域,K[x]中的多项式f(x),g(x),若有f=g,则可以得到什么?()A、f(x)=g(f(x))B、g(x)=f(f(x))C、f(x)=g(x)D、g(x)=f(g(x))

在F[x]中,若f(x)g(x)=f(x)h(x)成立,则可以推出h(x)=g(x)的条件是什么?()A、g(x)不为0B、f(x)不为0C、h(x)不为0D、h(x)g(x)不为0

带余除法中设f(x),g(x)∈F[x],g(x)≠0,那么F[x]中使f(x)=g(x)h(x)+r(x)成立的h(x),r(x)有几对?()A、无数多对B、两对C、唯一一对D、根据F[x]而定

单选题在F[x]中,若f(x)g(x)=f(x)h(x)成立,则可以推出h(x)=g(x)的条件是什么?()Ag(x)不为0Bf(x)不为0Ch(x)不为0Dh(x)g(x)不为0

单选题带余除法中设f(x),g(x)∈F[x],g(x)≠0,那么F[x]中使f(x)=g(x)h(x)+r(x)成立的h(x),r(x)有几对?()A无数多对B两对C唯一一对D根据F[x]而定

单选题在F[x]中,有f(x)+g(x)=h(x)成立,若将x用矩阵x+c代替,可以得到什么?()Af(xc)+g(xc)=h(x+c)Bf(x+c)g(x+c)=ch(x)C[f(x)+g(x)]c=h(x+c)Df(x+c)+g(x+c)=ch(x)

填空题设z=f(xy,x/y)+g(y/x),其中f、g均可微,则∂z/∂x=____。

单选题在F[x]中从p(x)|f(x)g(x)可以推出什么?()Ap(x)Bp(x)Cp(x)Dg(x)f(x)

单选题设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。[2018年真题]Af(x)/g(x)>f(a)/g(b)Bf(x)/g(x)>f(b)/g(b)Cf(x)g(x)>f(a)g(a)Df(x)g(x)>f(b)g(b)

判断题互素多项式的性质,(f(x),h(x))=1,(g(x),h(x))=1,则有(f(x)g(x),h(x))=1成立。A对B错

单选题设K是个数域,K[x]中的多项式f(x),g(x),若有f=g,则可以得到什么?()Af(x)=g(f(x))Bg(x)=f(f(x))Cf(x)=g(x)Dg(x)=f(g(x))

单选题互素多项式的性质,若f(x)|g(x)h(x),且(f(x),g(x))=1,那么可以推出什么?()Ag(x)Bh(x)Cf(x)g(x)Df(x)

单选题F[x]中,有f(x)g(x)=h(x)成立,若将xy代替x可以得到什么?()Af(xy)g(xy)=h(2xy)Bf(xy)g(xy)=h(xy)Cf(xy)+g(xy)=h(xy)D[fx+gx]y=hxy

单选题互素多项式的性质,若f(x)|h(x),g(x)|h(x),且(f(x),g(x))=1,那么可以推出什么?()Af(x)g(x)Bh(x)Ch(x)Dg(x)

判断题在F[x]中,有f(x)+g(x)=h(x)成立,若将x用矩阵A代替,将有f(A)+g(A)≠h(A)。A对B错