填空题当线性规划问题的可行域非空时,它是有界或无界的()多边形。

填空题
当线性规划问题的可行域非空时,它是有界或无界的()多边形。

参考解析

解析: 暂无解析

相关考题:

若线性规划的可行域非空有界,则其顶点中必存在最优解。() 此题为判断题(对,错)。

若线性规划无最优解则其可行域无界基本解为空( )

关于线性规划的原问题和对偶问题,下列说法正确的是()A、若原问题为无界解,则对偶问题也为无界解B、若原问题无可行解,其对偶问题具有无界解或无可行解C、若原问题存在可行解,其对偶问题必存在可行解D、若原问题存在可行解,其对偶问题无可行解

当线性规划问题的可行域非空时,它是有界或无界的()多边形。

线性规划问题有可行解且凸多边形无界,这时()A、没有无界解B、没有可行解C、有无界解D、有有限最优解

下列关于线性规划的解的情况的说法不正确的是()。A、最优解必定可在凸集的某一个顶点上达到。B、最优解也可能在凸集的某一条边界上达到。C、线性规划的可行域若有界,则一定有最优解。D、线性规划的可行域若无界,则一定无最优解。

关于图解法,下列结论最正确的是()。A、线性规划的可行域为凸集B、线性规划的最优解一定可在凸集的一个顶点达到C、若线性规划的可行域有界,则一定有最优解D、以上都正确

若线性规划无最优解则其可行域无界()

若线性规划问题具有可行解,且可行解域有界,则该线性规划问题最多具有有限个数的最优解。

使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题()A、有唯一的最优解B、有无穷多最优解C、为无界解D、无可行解

关于线性规划模型的可行域,下面()的叙述正确。A、可行域内必有无穷多个点B、可行域必有界C、可行域内必然包括原点D、可行域必是凸的

根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解;反之,当对偶问题无可行解时,其原问题为无界解。

根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解。

当线性规划的可行解集合非空时一定()A、包含原点B、有界C、无界D、是凸集

若线性规划模型的可行域非空有界,则其顶点中必存在最优解。

若可行域非空有界,则线性规划的目标函数一定可以在可行域的()上达到最优值

线性规划无可行解是指()A、进基列系数非正B、有两个相同的最小比值C、用大M法求解时,最优解中还有非零的人工变量D、可行域无界

单选题当线性规划的可行解集合非空时一定()A包含原点B有界C无界D是凸集

单选题关于线性规划的原问题和对偶问题,下列说法正确的是()A若原问题为无界解,则对偶问题也为无界解B若原问题无可行解,其对偶问题具有无界解或无可行解C若原问题存在可行解,其对偶问题必存在可行解D若原问题存在可行解,其对偶问题无可行解

单选题使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题()A有唯一的最优解B有无穷多最优解C为无界解D无可行解

单选题线性规划无可行解是指()A进基列系数非正B有两个相同的最小比值C用大M法求解时,最优解中还有非零的人工变量D可行域无界

单选题线性规划问题有可行解且凸多边形无界,这时()A没有无界解B没有可行解C有无界解D有有限最优解

单选题下列关于线性规划的解的情况的说法不正确的是()。A最优解必定可在凸集的某一个顶点上达到。B最优解也可能在凸集的某一条边界上达到。C线性规划的可行域若有界,则一定有最优解。D线性规划的可行域若无界,则一定无最优解。

判断题若线性规划无最优解则其可行域无界()A对B错

填空题若可行域非空有界,则线性规划的目标函数一定可以在可行域的()上达到最优值

单选题关于线性规划模型的可行域,下面()的叙述正确。A可行域内必有无穷多个点B可行域必有界C可行域内必然包括原点D可行域必是凸的

判断题若线性规划问题具有可行解,且可行解域有界,则该线性规划问题最多具有有限个数的最优解。A对B错