单选题随机变量X的平均值为5,标准差也为5,随机变量Y的均值为9,方差为l6,则V=2X+3Y的均值与方差为( )。A37,164B37,244C22,164D22,244
单选题
随机变量X的平均值为5,标准差也为5,随机变量Y的均值为9,方差为l6,则V=2X+3Y的均值与方差为( )。
A
37,164
B
37,244
C
22,164
D
22,244
参考解析
解析:
x的平均值为5也就是均值为5,其标准差为5则其方差为25,则E(2x+3y)=2E(x)+3E(y)=2×5+3×9=37 Vat(2x+3y)=4 Var(x)+9 Vat(y)=4×25+9×16=100+144=244
相关考题:
关于中心极限定理,下列说法正确的是( )。A.多个随机变量的平均值(仍然是一个随机变量)服从或近似服从正态分布B.几个相互独立同分布随机变量,其共同分布不为正态分布或未知,但其均值μ和方差σ2都存在,则在n相当大的情况下,样本均值X近似服从正态分布N(μ,σ2/n)C.无论什么分布(离散分布或连续分布,正态分布或非正态分布),其样本均值X的分布总近似于正态分布D.设n个分布一样的随机变量,假如其共同分布为正态分布N(μ,σ2),则样本均值X仍为正态分布,其均值不变仍为μ,方差为σ2/n
已知X和Y均为正态分布随机变量,X~N(5,100), Y~N(6,121),X和Y的相关系数为0.5,那么随机变量X+Y所服从的分布为:( )。A.均值为5,方差为221的正态分布B.均值为6,方差为221的正态分布C.均值为11,方差为221的正态分布D.均值为11,方差为331的正态分布
如果随机变量X服从均值为2,方差为9的正态分布,随机变量Y服从均值为5,方差为16的正态分布,X与Y的相关系数为0.5,那么X+2Y所服从的分布是: ( )。A.均值为12,方差为100的正态分布B.均值为12,方差为97的正态分布C.均值为10,方差为100的正态分布D.不再服从正态分布
已知置Xi (i=1,2,3,…,35,36)是36个来自正态分布N(216,16)的独立随机变量。设,关于的分布可描述为( )。A.均值为216,方差为16B.均值为6,标准差为4C.均值为6,方差为16D.均值为216,标准差为2/3
随机变量X与Y相互独立,X的均值为5,标准差也为5,Y的均值为9,方差为16,则V=2X+3Y的均值与方差分别为( )。A. 22; 164 B. 22; 244 C. 37; 164 D. 37; 244
单选题若随机变量Y与X的关系为Y=3X-2,并且随机变量X的方差为2,则Y的方差D(Y)为()A6B12C18D36