Prim算法和Dijkstra算法选择下一个节点的标准分别是什么?对于有负边的无向图,Prim算法和Dijkstra算法还能保证获得最优解吗?
Prim算法和Dijkstra算法选择下一个节点的标准分别是什么?对于有负边的无向图,Prim算法和Dijkstra算法还能保证获得最优解吗?
相关考题:
下面哪些使用的不是贪心算法()A.单源最短路径中的Dijkstra算法B.最小生成树的Prim算法C.最小生成树的Kruskal算法D.计算每对顶点最短路径的Floyd-Warshall算法
对于含n个顶点、e条边的无向连通图,利用Prim算法构造最小生成树的时间复杂度(),用Kruskal算法构造最小生成树的时间复杂度为()。 A.O(n)B.O(n²)C.O(e)D.O(eloge)F.O(e²)
Prim算法和Kruscal算法都是无向连通网的最小生成树的算法,Prim算法从一 个顶点开始,每次从剩余的顶点加入一个顶点,该顶点与当前生成树中的顶占的连边权重 最小,直到得到最小生成树开始,Kruscal算法从权重最小的边开始,每次从不在当前的生成树顶点之间的边中选择权重最小的边加入,直到得到一颗最小生成树,这两个算法都采用了( )设计策略,且( )。A.分治 B.贪心 C.动态规划 D.回溯 A.若网较稠密,则Prim算法更好 B.两个算法得到的最小生成树是一样的 C.Prim算法比Kruscal算法效率更高 D.Kruscal算法比Prim算法效率更高
下面关于Prim算法和KruskAl算法的时间复杂度正确的是()。 A.Prim算法的时间复杂度与网中的边数有关,适合于稀疏图B.Prim算法的时间复杂度与网中的边数无关,适合于稠密图C.KruskAl算法的时间复杂度与网中的边数有关,适合于稠密图D.KruskAl算法的时间复杂度与网中的边数无关,适合于稀疏图
Prim算法和Kruscal算法都是无向连通网的最小生成树的算法,Prim算法从一个顶点开始,每次从剩余的顶点中加入一个顶点,该顶点与当前的生成树中的顶点的连边权重最小,直到得到一颗最小生成树;Kruscal算法从权重最小的边开始,每次从不在当前的生成树顶点中选择权重最小的边加入,直到得到一颗最小生成树,这两个算法都采用了(64)设计策略,且(65)。A.若网较稠密,则Prim算法更好B.两个算法得到的最小生成树是一样的C.Prim算法比Kruscal算法效率更高 D.Kruscal算法比Prim算法效率更高
Prim算法和Kruscal算法都是无向连通网的最小生成树的算法,Prim算法从一个顶点开始,每次从剩余的顶点中加入一个顶点,该顶点与当前的生成树中的顶点的连边权重最小,直到得到一颗最小生成树;Kruscal算法从权重最小的边开始,每次从不在当前的生成树顶点中选择权重最小的边加入,直到得到一颗最小生成树,这两个算法都采用了(请作答此空)设计策略,且( )。A.分治B.贪心C.动态规划D.回溯
Prim算法和Kruscal算法都是无向连通网的最小生成树的算法,Prim算法从一个顶点开始,每次从剩余的顶点中加入一个顶点,该顶点与当前的生成树中的顶点的连边权重最小,直到得到一颗最小生成树;Kruscal算法从权重最小的边开始,每次从不在当前的生成树顶点中选择权重最小的边加入,直到得到一颗最小生成树,这两个算法都采用了(64)设计策略,且(65)。A.分治B.贪心C.动态规划D.回溯
填空题对于含有n个顶点e条边的连通图,利用Prim算法求最小生成树的时间复杂度为(),利用Kruskal算法求最小生成树的时间复杂度为()。