当观测次数无限增多时,偶然误差的算术平均值趋近于零。
当观测次数无限增多时,偶然误差的算术平均值趋近于零。
相关考题:
下列关于偶然误差特性的描述中,()是错误的。A、当观测次数无限增大时,偶然误差的理论平均值趋近于零B、绝对值相等的正、负误差出现的频率不相等C、在一定的观测条件下,偶然误差的绝对值不会超过一定的限值D、偶然误差是可以完全消除或抵消的E、绝对值小的误差比绝对值大的误差出现的频率大
算术平均值中误差比单位观测值中误差缩小倍,由此得出结论是()。A、观测次数越多,精度提高越多B、观测次数增加可以提高精度,但无限增加效益不高C、精度提高与观测次数成正比D、无限增加次数来提高精度,会带来好处E、无限增加次数来提高精度,不会带来好处
多选题算术平均值中误差比单位观测值中误差缩小倍,由此得出结论是()。A观测次数越多,精度提高越多B观测次数增加可以提高精度,但无限增加效益不高C精度提高与观测次数成正比D无限增加次数来提高精度,会带来好处E无限增加次数来提高精度,不会带来好处
单选题不属于偶然误差特性的是( )。A在一定观测条件下,偶然误差的绝对值不会超过一定的限值B绝对值小的误差比绝对值大的误差出现的机会少C绝对值相等的正、负误差出现的机会相同D偶然误差的算术平均值,随着观测次数的无限增加而趋向于零