有甲、乙、丙、丁、戊五个人,每个人头上戴一顶内帽子或者黑帽子,每个人显然只能看见别人头上帽子的颜色,看不见自己头上帽子的颜色。并且,一个人戴白帽子当且仅当他说真话,戴黑帽子当且仅当他说假话。已知:甲说:我看见三顶白帽子一顶黑帽子。乙说:我看见四顶黑帽子。丙说:我看见一顶白帽子三顶黑帽子。戊说:我看见四顶白帽子。根据上述题干,下列陈述都是假的,除了( )A、甲和丙都戴白帽子 B、乙和丙都戴黑帽子C、戊戴白帽子,但丁戴黑帽子 D、丙戴黑帽子,但甲戴白帽子E、丙和丁都戴白帽子
有甲、乙、丙、丁、戊五个人,每个人头上戴一顶内帽子或者黑帽子,每个人显然只能看见别人头上帽子的颜色,看不见自己头上帽子的颜色。并且,一个人戴白帽子当且仅当他说真话,戴黑帽子当且仅当他说假话。已知:
甲说:我看见三顶白帽子一顶黑帽子。
乙说:我看见四顶黑帽子。
丙说:我看见一顶白帽子三顶黑帽子。
戊说:我看见四顶白帽子。
根据上述题干,下列陈述都是假的,除了( )
A、甲和丙都戴白帽子
B、乙和丙都戴黑帽子
C、戊戴白帽子,但丁戴黑帽子
D、丙戴黑帽子,但甲戴白帽子
E、丙和丁都戴白帽子
甲说:我看见三顶白帽子一顶黑帽子。
乙说:我看见四顶黑帽子。
丙说:我看见一顶白帽子三顶黑帽子。
戊说:我看见四顶白帽子。
根据上述题干,下列陈述都是假的,除了( )
A、甲和丙都戴白帽子
B、乙和丙都戴黑帽子
C、戊戴白帽子,但丁戴黑帽子
D、丙戴黑帽子,但甲戴白帽子
E、丙和丁都戴白帽子
参考解析
解析:解这道题只能用假设法和归谬法。先假设甲的话为真,则甲戴白帽子,加起来共有四顶白帽子一顶黑帽子,于是乙和丙的话就是假的,于是乙和丙都戴黑帽子,这与A项的话为真的结果(一顶黑帽子)矛盾,因此A项的话不可能为真,必定为假。再假设乙的话为真,则他自己戴白帽子,共有一顶白帽子四顶黑帽子;这样,由于丙看不见他自己所戴帽子的颜色,当他说“我看见一顶白帽子三顶黑帽子”时,他所说的就是真话,于是他戴白帽子,这样乙和丙都戴白帽子,有两顶白帽子,与乙原来的话矛盾。所以,乙所说的只能是假话,他戴黑帽子。既然已经确定甲、乙都戴黑帽子,则戊所说的“我看见四顶白帽子”就是假话,戊也戴黑帽子。现假设丙的话为假,则他实际看见的都是黑帽子,他自己也戴黑帽子,于是五个人都戴黑帽子,这样,乙的话就是真话;但我们已经证明乙的话不可能为真,因此丙的话也不可能为假,于是丙和未说话的丁戴白帽子。最后结果是:甲、乙、戌说假话,戴黑帽子;丙、丁说真话,戴白帽子。所以,正确的选项是E项。
相关考题:
(2)10个人排队戴帽子,10个黄帽子,9个蓝帽子,戴好后,后面的人可以看见前面所有人的帽子,然后从后面问起,问自己头上的帽子是什么颜色,结果一直问了9个人都说不知道,而最前面的人却知道自己头上的帽子的颜色。问是什么颜色,为什么?
一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其他人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什么帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子?
逻辑二:甲 乙丙三方各带一顶帽子丙个是瞎子 帽子有黑白两种颜色 并不是所有的都是白色他们只能看到另外两个人的帽子颜色不能看到自己的帽子颜色甲睁开眼看了看 说不能确定自己的帽子颜色乙睁开眼睛 也说不能确定自己的帽子颜色丙说:“我知道自己的帽子颜色了”请问 丙的帽子是什么颜色 为什么?
一个舞会中,一群人戴帽子。黑的帽子或白的帽子,至少有一人戴黑帽子。自己不能看到自己戴的帽子颜色,可以看到别人的。如果知道自己戴黑帽子就打自己的耳光。第一次熄灯,没有任何声音。亮灯,再熄灯。第2次还是没有声音。亮灯,再熄灯。第3次,一片“拍拍拍”的响声。问有几个人戴黑帽子?
甲、乙、丙三个学生分别戴着三种不同颜色的帽子,穿着三种不同颜色的衣服去参加大运会志愿者服务活动。已知:(1)帽子和衣服的颜色都只有红、黄、白三种;(2)甲没戴红帽子,乙没戴黄帽子;(3)戴红帽子的学生没有穿白衣服;(4)戴黄帽子的学生穿着红衣服;(5)乙没有穿黄衣服。试问:对三人所戴帽子和所穿衣服判断正确的是( )。A.甲戴白色帽子,乙穿红色衣服B.甲戴黄色帽子,穿白色衣服C.乙穿白色衣服,丙戴红色帽子D.甲穿红色衣服,丙穿白色衣服
一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其他人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什么帽子,然后关灯,如果有人认为自己戴的是黑帽子,就拍自已的手。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有噼噼啪啪拍手的声音响起。问有多少人戴着黑帽子?A.一人。B.两人。C.三人。D.四人。E.无法判断。
甲、乙、丙三个学生分别戴着三种不同颜色的帽子,穿着三种不同颜色的衣服去参加一次争办奥运的活动。已知:(1)帽子和衣服的颜色都只有红、黄、蓝三种;(2)甲没戴红帽子,乙没戴黄帽子;(3)戴红帽子的学生没有穿蓝衣服;(4)戴黄帽子的学生穿着红衣服;(5)乙没有穿黄色衣服。试问:甲、乙、丙三人各什么颜色的帽子,穿什么颜色的衣服?A.甲戴蓝帽子穿红衣服。B.乙戴蓝帽子穿蓝衣服。C.丙戴黄帽子穿黄衣服。D.甲戴蓝帽子穿蓝衣服。E.丙戴红帽子穿红衣服。
有甲、乙、丙、丁、戊五个人,每个人头上戴一顶白帽子或者黑帽子,每个人显然只能看见别人头上帽子的颜色,看不见自己头上帽子的颜色。并且,一个人戴白帽子当且仅当他说真话,戴黑帽子当且仅当他说假话。已知:甲说:我看见三顶白帽子一顶黑帽子。乙说:我看见四顶黑帽子。丙说:我看见一顶白帽子三顶黑帽子。戊说:我看见四顶白帽子。根据上述题干,下列陈述都是假的,除了( )A.甲和丙都戴白帽子 B.乙和丙都戴黑帽子C.戊戴白帽子,但丁戴黑帽子 D.丙戴黑帽子,但甲戴白帽子E.丙和丁都戴白帽子
穿戴防护用品的顺序是()A、穿防护服、戴口罩、戴防护镜、戴帽子、穿鞋套或胶鞋、戴手套B、戴口罩、戴帽子、穿防护服、戴防护镜、穿鞋套或胶鞋、戴手套C、戴帽子、穿防护服、戴口罩、戴防护镜、穿鞋套或胶鞋、戴手套D、穿防护服、戴帽子、戴口罩、戴防护镜、穿鞋套或胶鞋、戴手套
有小利、小美、小景、小真、小珑五个孩子在一起玩耍,有的孩子额头上沾了泥巴。显然,每个孩子只能看见别人头上有没有泥巴,而看不见自己头上有没有泥巴。头上沾有泥巴的孩子只说假话,只说假话的孩子头上一定沾有泥巴。同样,头上没泥巴的孩子只说真话,只说真话的孩子头上一定没有泥巴。已知:小利说:我看见三个人头上没泥巴,一个人头上有泥巴小美说:我看见四个人头上都有泥巴小景说:我看见四个人头上都没泥巴。小珑说:我看见一个人头上没泥巴,三个人头上有泥巴。由此,以下陈述一定为真的是()。A、小景头上没有泥巴B、小利和小真头上没有泥巴C、小美头上有泥巴D、小真和小珑头上有泥巴
问答题有10个人站成一队,每个人头上都戴着一顶帽子,帽子有3顶红的,4顶黑的5顶白的。每个人不能看到自己的帽子,只能看到前面的人的,最后一个人能够看到前面9个人的帽子颜色,倒数第二个人能够看到前面8个人的帽子颜色,以此类推,第一个人什么也看不到。现在从最后面的那个人开始,问他是不是知道自己所带帽子的颜色,如果他回答不知道,就继续问前面的人。如果后面的9个人都不知道,那么最前面的人知道自己颜色的帽子吗?为什么?
问答题一个牢房,里面关有3个犯人。因为玻璃很厚,所以3个犯人只能互相看见,不能听到对方所说的话。一天,国王命令下人给他们每个人头上都戴了一顶帽子,告诉他们帽子的颜色只有红色和黑色,但是不让他们知道自己所戴的帽子是什么颜色。在这种情况下,国王宣布两条命令如下:1.哪个犯人能看到其他两个犯人戴的都是红帽子,就可以释放谁;2.哪个犯人知道自己戴的是黑帽子,也可以释放谁。事实上,他们三个戴的都是黑帽子。只是他们因为被绑,看不见自己的罢了。很长时间,他们3个人只是互相盯着不说话。可是过了不久,聪明的A用推理的方法,认定自己戴的是黑帽子。您也想想,他是怎样推断的呢?
问答题有甲、乙、丙、丁、戊五个人,每个人头上戴一顶白帽子或者黑帽子,每个人显然只能看见别人头上帽子当且仅当他说真话,戴黑帽子当且仅当他说假话。已知:甲说:我看见三顶白帽子一顶黑帽子;乙说:我看见四顶黑帽子;丙说:我看见一顶白帽子三顶黑帽子;戊说:我看见四顶白帽子。根据上述条件,请推理谁说真话:?谁说假话?谁戴白帽子?谁戴黑帽子?
问答题有4个人在做游戏,一人拿了5顶帽子,其中3顶是白的,2顶是黑的。让其余的3人——A、B、C三人站成三角形,闭上眼睛。他给每人戴上一顶白帽子,把两顶黑帽子藏起来,然后让同学们睁开眼睛,不许交流相互看,猜猜自己戴的帽子的颜色。A、B、C三人互相看了看最后异口同声正确地说出了他们所带帽子是白色的,他们是怎么推出来的?