对于多刚体题单自由度理想约束系统,仅仅求与切向加速度角加速度有关的加速度量,一般优选功率方程。

对于多刚体题单自由度理想约束系统,仅仅求与切向加速度角加速度有关的加速度量,一般优选功率方程。


参考答案和解析

相关考题:

刚体处于瞬时平动状态时,刚体的角速度和角加速度在该瞬时都等于零。() 此题为判断题(对,错)。

下列说法中哪个或哪些是正确的()(1)作用在定轴转动刚体上的力越大,刚体转动的角加速度应越大。(2)作用在定轴转动刚体上的合力矩越大,刚体转动的角速度越大(3)作用在定轴转动刚体上的合力矩为零,刚体转动的角速度为零(4)作用在定轴转动刚体上合力矩越大,刚体转动的角加速度越大(5)作用在定轴转动刚体上的合力矩为零,刚体转动的角加速度为零。A、(1)和(2)是正确的B、(2)和(3)是正确的C、(3)和(4)是正确的D、(4)和(5)是正确的

刚体做定轴转动时,刚体上点的切向加速度为( )。 A.rwB.reC.rw2D.r2w

定轴转动的刚体的角加速度与刚体所受的合外力矩成反比,与刚体的转动惯量成正比。() 此题为判断题(对,错)。

刚体绕定轴转动,当______时刚体作减速转动。A.角加速度为负值B.角速度为负值C.角加速度与角速度方向一致D.角加速度与角速度方向相反

一质点沿半径R=1.6m的圆周运动,t=0时刻质点的位置为θ=0,质点的角速度w0=3.14s-1.若质点角加速度a=1.24t s-2。求:t=2.00 s时质点的速率、切向加速度和法向加速度。

角动量等于转动惯量乘以()。A、角速度B、角加速度C、速度D、切向加速度

描述刚体绕定轴转动快慢的物理量是()。A、转动方程B、角速度C、角加速度D、以上都不是

平面运动刚体相对其上任意两点的()。A、角速度相等,角加速度相等B、角速度相等,角加速度不相等C、角速度不相等,角加速度相等D、角速度不相等,角加速度不相等

运动学研究点和刚体运动的几何性质,包括点的()和刚体的运动方程、角速度和角加速度等,而不考虑力和质量等与运动有关的物理量。A、运动方程B、速度C、加速度D、轨迹

作定轴转动的刚体,任一点切向加速度指向()角加速度转向。A、顺着B、背离C、垂直D、倾斜

刚体作平面运动时,绕基点转动的角速度和角加速度与基点的选取无关。

作平面运动的刚体相对于不同基点的平动坐标系有相同的角速度与角加速度。

刚体作定轴转动时,角加速度增大,其角速度也必然随之增大.

定轴转动刚体对转轴的动量矩,等于刚体对该轴的转动惯量与角加速度之积。

定轴转动刚体的角加速度为正时,刚体必然越转越快.

两个作定轴转动的刚体,若其角加速度始终相等,则其转动方程相同。

刚体作定轴转动时角加速度为正,表示加速转动,为负表示减速转动。

刚体的平面运动可取任意基点分解为平移和转动,其中平移的速度和加速度与基点的选择(),转动的角速度和角加速度与基点的选择()。A、有关,有关B、无关,无关C、有关,无关D、无关,有关

度量角速度变化快慢的物理量是()。A、转动方程B、角速度C、角加速度D、以上都不是

作定轴转动的两个刚体,在相同的时间内转过相同的转角,因此这两个刚体的转动方程、角速度和角加速度无疑也是相同的。

刚体绕定轴转动时,怎样根据角加速度和角速度的指向来判定是加速转动还是减速转动()。A、角速度为正是加速运动B、角加速度为正是加速运动C、角速度与角加速度同方向时为加速运动D、不能判断

刚体定轴转动的特点是什么?刚体定轴转动时各质元的角速度、线速度、向心加速度、切向加速度是否相同?

填空题刚体以角速度ω,角加速度ε绕定轴转动则在其转动半径为r处的线速度v=(),切线加速度at=(),法向加速度an=()。

单选题当()时,刚体作加速转动。A店加速度为正值时B角速度为正值时C角加速度与角速度方向一致时D角加速度与角速度方向相反时

单选题当()时,刚体作减速转动。A角加速度为负值时B角速度为负值时C角加速度与角速度方向一致时D角加速度与角速度方向相反时

单选题角动量等于转动惯量乘以()。A角速度B角加速度C速度D切向加速度

单选题某瞬时刚体的转动方向是指()。A瞬时角速度方向B瞬时角加速度方向C切向加速度方向D法向加速度方向