王老师在教授“2、3、5整除法”时,首先让班上同学任意提出一个数字,他都可以立即回答这个数能否被“2、3、5”整除。在热烈的氛围中,王老师再趁机提出,“大家想知道我为什么能一下子猜出数字是否能被整除吗?”随后进入整除法的教学。这种教学导入方式是()。A.故事导入法B.衔接导人法C.悬念导入法D.直接导入法
王老师在教授“2、3、5整除法”时,首先让班上同学任意提出一个数字,他都可以立即回答这个数能否被“2、3、5”整除。在热烈的氛围中,王老师再趁机提出,“大家想知道我为什么能一下子猜出数字是否能被整除吗?”随后进入整除法的教学。这种教学导入方式是()。
A.故事导入法
B.衔接导人法
C.悬念导入法
D.直接导入法
B.衔接导人法
C.悬念导入法
D.直接导入法
参考解析
解析:悬念导入法是指在教学中,创设带有悬念性的问题来导入新的内容,给学生造成一种神秘感,从而激起学生的好奇心和求知欲的一种导入方法。
相关考题:
(1)王老师感到头晕 (2)王老师走进教室(3)王老师批改作文到深夜 (4)王老师被送到医院(5)王老师被同学们叫醒A.3—2—1—5—4B.3—5—1—2—4C.2—1—5—4—3D.2—1—4—3—5
现有以下程序: Private Sub Command1 Click( ) c1=0 c2=0 For i=1 To 100 If i Mod 3=0 Then c1=c1+1 Else If i Mod 7=0 Then c2=c2+1 End If Next i Print c1+c2 End Sub 此程序运行后输出的是在1~100范围内( )。A.同时能被3和7整除的整数个数B.能被3或7整除的整数个数(同时被3和7整除的数只记一次)C.能被3整除,而不能被7整除的整数个数D.能被7整除,而不能被3整除的整数个数
用数字4、5、6、7、8、9这六个数字组成一个六位数ABCDEF(不一定按给出数字的顺序排列),若把A移到最后,所得的六位数BCDEFA能被2整除,若再把8移到最后,所得的六位数CDEFAB能被3整除,…,依此类推,若把E移到最后,所得的六位数能被6整除,则六位数ABCDEF的最小值为( )。A.476598B.476589C.456789D.465879
三段论:“因为3258的各位数字之和能被3整除,所以3258能被3整除”。前提是()A、 “3258能被3整除”是小前提B、 “3258的各位数字之和能被3整除”是大前提C、 “各位数字之和能被3整除的数都能被3整除” 是省略的大前提D、 “3258能被3整除”是大前提
单选题三段论:“因为3258的各位数字之和能被3整除,所以3258能被3整除”。前提是()A “3258能被3整除”是小前提B “3258的各位数字之和能被3整除”是大前提C “各位数字之和能被3整除的数都能被3整除” 是省略的大前提D “3258能被3整除”是大前提
问答题输入一个数,判断该数是否能被5整除? 要求:采用switch语句实现。