质量为m,长为2l的均质细杆初始位于水平位置,如图所示。A端脱落后,杆绕轴B转动,当杆转到铅垂位置时,AB杆角加速度的大小为:

质量为m,长为2l的均质细杆初始位于水平位置,如图所示。A端脱落后,杆绕轴B转动,当杆转到铅垂位置时,AB杆角加速度的大小为:



参考解析

解析: 根据定轴转动微分方程JBa=MB(F),当杆转动到铅垂位置时,杆上所有外力对B点的力矩为零。

相关考题:

均质细杆重力为P、长2L,A端铰支,B端用绳系住,处于水平位置,如图所示。当B端绳突然剪断瞬时,AB杆的角加速度大小为:

质量为m,长为2l的均质细杆初始位于水平位置,如图所示。A端脱落后,杆绕轴B 转动,当杆转到铅通位置时,AB杆角加速度的大小为:

均质直角曲杆OAB的单位长度质量为ρ,OA=AB=2l,图示瞬时以角速度ω、角加速度α绕轴O转动,该瞬时此曲杆对O轴的动量矩的大小为:

均质细杆重P,长2L,A端铰支,B端用绳系住,处于水平位置,如图所示。当B

均质杆OA长L,可在铅直平面内绕水平固定轴O转动。开始杆处在如图所示的稳定平衡位置。今欲使此杆转过1/4转而转到水平位置,应给予杆的另一端A点的速度vA的大小为:

T形均质杆OABC以匀角速度ω绕O轴转动,如图所示。已知OA杆的质量为2m,长为2l,BC杆质量为m,长为l,则T形杆在图示位置时动量的大小为:

质量为m,长为2l的均质杆初始位于水平位置, 如图所示。A端脱落后,杆绕轴B转动,当杆转到铅垂位置时,AB 杆B处的约束力大小为:

均质杆OA,重P,长l,可在铅直平面内绕水平固定轴O转动。杆在图示铅直位置时静止,欲使杆转到水平位置,则至少要给杆的角速度是(  )。

均质细直杆OA长为l,质量为m,A端固结一质量为m的小球(不计尺寸),如图所示。当OA杆以匀角速度绕O轴转动时,该系统对O轴的动量矩为:

质量为m,长为2l的均质细杆初始位于水平位置,如图所示。A端脱落后,杆绕轴B转动,当杆转到铅垂位置时,AB杆角加速度的大小为:

匀质杆质量为m,长OA=l,在铅垂面内绕定轴o转动。杆质心C处连接刚度系数是较大的弹簧,弹簧另端固定。图示位置为弹簧原长,当杆由此位置逆时针方向转动时,杆上A点的速度为VA,若杆落至水平位置的角速度为零,则vA的大小应为:

忽略质量的细杆OC=l,其端部固结匀质圆盘。杆上点C为圆盘圆心。盘质量为m,半径为r。系统以角速度ω绕轴O转动,如图所示。系统的动能是:

均质细杆AB重力为P,长为2l,A端铰支,B端用绳系住,处于水平位置,如图所示。当B端绳突然剪断瞬时,AB杆的角加速度大小为3g/4l,则A处约束力大小为:A. FAx= 0,FAy=0B. FAx= 0,FAy=P/4C. FAx= P,FAy=P/2D.FAx= 0,FAy=P

均质细直杆OA长为l ,质量为m,A端固结一质置为m的小球(不计尺寸),如图所示。当OA杆以匀角速度w绕O轴转动时,该系统时O轴的动量矩为:

如图所示质量为m、长为l的均质杆OA绕O轴在铅垂平面内作定轴转动。已知某瞬时杆的角速度为ω,角加速度为α,则杆惯性力系合力的大小为(  )。

均质细杆AB重力为P、长2L,A端铰支,B端用绳系住,处于水平位置,如图所示,当B端绳突然剪断瞬时,AB杆的角加速度大小为:

图示均质细直杆AB长为l,质量为m,图示瞬时A点的速度为则AB杆的动量大小为:

质量不计的水平细杆AB长为L,在铅垂图面内绕A轴转动,其另一段固连质量为m的质点B,在图示水平位置静止释放,则此瞬时质点B的惯性力为(  )。

杆OA绕固定轴O转动,长为l。某瞬时杆端A点的加速度a如图所示,则该瞬时OA的角速度及角加速度为(  )。

质量为m,长为2l的均质细杆初始位于水平位置,如图4-68所示。A端脱落后, 杆绕轴B转动,当杆转到铅垂位置时,AB杆B处的约束力大小为( )。

T形均质杆OABC以匀角速度ω绕O轴转动,如图所示。已知OA杆的质量为2m,长为2l,BC杆质量为m,长为l,则T形杆在该位置对O轴的动量矩为:

均质细杆AB重力为P、长2L, A端铰支,B端用绳系住,处于水平位置,如图4-73所示。当B端绳突然剪断瞬时AB杆的角加速度大小为()。A.0 B.3g/4L C.3g/2L D.6g/L

均质细直杆AB长为l,质量为m,以匀角速度ω绕O轴转动,如图所示,则AB杆的动能为:

均质细直杆AB长为l,质量为m,以匀角速度ω绕O轴转动,如图4-69所示, 则AB杆的动能为( )。