当cosφ=1时,温度升高,感应系电能表误差趋向于快。

当cosφ=1时,温度升高,感应系电能表误差趋向于快。


相关考题:

感应式电能表当环境温度升高时,在cosψ=1.0情况下,误差呈“£«”方向变化,在cosψ=0.5感性情况下,误差呈“一”方向变化。温度下降时,情况相反。() 此题为判断题(对,错)。

当工作电压改变时,引起感应系电能表误差的主要原因是负载功率的改变。

感应系电能表的工作频率改变时,对幅值误差影响较大。

1.0级三相感应式电能表带不平衡负载时,在cosθ=1.0时,20%标定电流负载点的基本误差限为()。A、±1.0%B、±2.5%C、±2.0%D、±3.0%

简述感应系电能表电流铁芯上设置的相位误差调整方法和工作原理。

感应系电能表当摩擦力矩不变时,负载电流越大,则摩擦引起的误差越大。

直接接入式电能表,在做1.0级感应系三相有功电能表不平衡负载试验时,负载电流为0.5Ib~Imax、cosφ=0.5L时,其基本误差限为±2.0%。

机电式(感应系)电能表的永久磁铁,在温度升高时,其磁分子热运动加剧,使得永久磁铁的磁通量减少,而制动力矩与磁通量的平方成正比,所以电能表的误差将向负方向变化。

感应式单相有功电能表相角误差快,调整不过来是何原因?

平衡负载时,当1.0级三相有功电能表负载电流为0.1Ib~Imax,cos =1.0时,其基本误差限为±1.0%。

感应式电能表当环境温度升高时,在cosφ=1.0情况下,误差呈“+”方向变化,在cosφ=0.5感性情况下,误差呈“-”方向变化。温度下降时,情况相反。

当环境温度升高时,感应型电能表在cosφ=1时,误差一般将会()变化。A、向负变化B、向正变化C、基本不变D、为零

感应式电能表电压与电流铁芯的间隙偏大时,电能表满载时误差为()。A、偏快B、偏慢C、不影响D、不一定

当功率因数小于1时,感应式电能表温度附加误差由幅值温度误差和相位温度误差决定的,而()随温度的变化是引起其温度误差的主要原因。A、内相角B、电压线圈电阻C、电流工作磁通D、制动磁通

感应式电能表电压线圈有匝间短路现象时,电能表满载时误差为()。A、偏快B、偏慢C、不影响D、不一定

感应式电能表电流线圈有匝间短路现象时,电能表满载时误差为()。A、偏快B、偏慢C、不影响D、不一定

现场检验时可以打开机电式(感应系)电能表罩壳和现场调整电能表误差。

但环境温度升高时,感应式电能表的转盘转速在cosφ=1时变慢,cosφ=0.5变快

感应式电能表永久磁钢的间隙偏大时,电能表满载时误差为()。A、偏快B、偏慢C、不影响D、不一定

当工作电压改变时,引起机电式(感应系)电能表误差的主要原因是电压工作磁通改变,引起转动力矩的改变。

非正弦机电式(感应系)三相无功电能表,当三相不对称时,有附加误差,因此现场检验时,要求三相检验电路完全对称。

当功率因数为1时,感应式电能表温度附加误差主要是幅值温度误差,()随温度的变化是引起其温度误差的主要原因。A、内相角B、电压线圈电阻C、电流工作磁通D、制动磁通

现场检验时不允许打开机电式(感应系)电能表罩壳和现场调整电能表误差。当现场检验电能表误差超过电能表准确度等级值时应在三个工作日内更换。

机电式(感应系)电能表现场检验时可打开电能表罩壳进行调整电能表误差。

当环境温度改变时,引起机电式(感应系)电能表相角误差改变的主要原因是永久磁铁磁通量的改变。

测量电能表误差重复性应在cosφ=1.0、cosφ=0.5L时Ib负荷点做测量试验

温度升高,感应式电能表的误差()。A、向正方向变化B、向负方向变化C、不变D、不一定