有两箱同种类的元件,第一箱装50只,其中10只为一等品;第二箱装30只,其中18只为一等品。今从两箱中选出一箱,然后从该箱中作不放回抽取,每次一只,则第一次取出的元件是一等品的概率是 A. 0.5B. 0.2C.0.4D. 0.3

有两箱同种类的元件,第一箱装50只,其中10只为一等品;第二箱装30只,其中18只为一等品。今从两箱中选出一箱,然后从该箱中作不放回抽取,每次一只,则第一次取出的元件是一等品的概率是

A. 0.5

B. 0.2

C.0.4

D. 0.3


相关考题:

7、从装有r个红球和w个白球的盒子中不返回的取出两只, 求事件“第一只为红球, 第二只为白球”的概率.

装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都是一等品,则丢失的也是一等品的概率为A.2/9B.1/4C.3/8D.1/9

设有两箱同一种商品:第一箱内装50件,其中10件优质品;第二箱内装30件,其中18件优质品。现在随意打开一箱,然后从箱中随意取出一件,则取到是优质品的概率为_________。(保留四位小数)

在10件产品中有2件一等品,7件二等品和一件次品,从10件产品中不放回地抽取3件,用X表示其中抽取的一等品数,用Y表示其中的二等品数。则在X=0的条件下,Y的条件分布律为?

3、设有两箱同一种商品:第一箱内装50件,其中10件优质品;第二箱内装30件,其中18件优质品。现在随意打开一箱,然后从箱中随意取出一件,则取到是优质品的概率为_________。(保留四位小数)

教材习题 1.4 第 4 题,题目如下: 从装有 r 个红球和 w 个白球的盒子中不返回的取出两只,求事件“第一只为红球,第二只为白球”的概率。

今从装有8件某产品(其中一等品5件,二等品3件)的甲箱子中任取2件产品,然后将这2件产品放入装有4件一等品和4件二等品的乙箱中,再从乙箱中任取1件产品,则从乙箱中取到1件一等品的概率为A.21/40B.19/40C.17/40D.3/8

6、装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都是一等品,则丢失的也是一等品的概率为A.2/9B.1/4C.3/8D.1/9

今有两口箱子,第一箱装有2个红球1个白球,第二箱装有3个红球2个白球。现在从两箱中任取一箱,然后再从该箱中任取两次,每次取一个,不放回。则第二次取到红球的概率为()A.7/30B.17/30C.19/30D.11/30