非正弦周期信号的分解可用什么方法实现:()A.傅里叶变化;B.傅里叶变换;C.傅里叶级数展开;D.傅里叶卷积
周期性非正弦波的傅里叶级数展开式中,谐波的频率越高,其幅值()A越大B越小C不变D不一定
非正弦周期电流电路稳态分析有2个步骤展开成傅里叶级数和叠加出最后结果。()
傅里叶级数展开中,包含正弦分量,则原信号必为奇函数。() 此题为判断题(对,错)。
周期信号f(t)=-f(t±T/2),(T—周期),下列哪些不是其傅里叶级数展开式的结构特点()。 A、只有正弦项B、只有余弦项C、只含偶次谐波D、只含奇次谐波
若周期信号f(t)是时间t的奇函数,则其三角形傅里叶级数展开式中()。 A.没有余弦分量B.既有正弦分量和余弦分量,又有直流分量C.既有正弦分量和余弦分量D.仅有正弦分量
下列命题中,错误的是( ).A.设f(x)为奇函数,则f(x)的傅里叶级数是正弦级数B.设f(x)为偶函数,则f(x)的傅里叶级数是余弦级数C.D.
下列( )是周期为T的非正弦信号可以分解为傅里叶级数的条件。A.满足狄利赫利条件B.频谱是连续的C.必须平均值为零D.频谱是断续的
某周期为T的非正弦周期信号分解为傅里叶级数时,其三次谐波的角频率为300πrad/s,则该信号的周期T为( )s。A.50B.0.06C.0.02D.0.05
当非正弦函数f(t)满足狄里赫利条件时,可将其展开成傅里叶级数。( )
周期性非正弦波的傅里叶级数展开式中,谐波的频率越高,其幅值越( )A.大B.小C.无法判断
一个非正弦周期信号,利用傅里叶级数展开一般可以分解为( )。A.直流分量B.基波分量C.振幅分量D.谐波分量
关于谐波分析,下列说法正确的是( )A.一个非正弦周期波可分解为无限多项谐波成分,这个分解的过程称为谐波分析B.谐波分析的数学基础是傅里叶级数C.所谓谐波分析,就是对一个已知波形的非正弦周期信号,找出它所包含的各次谐波分量的振幅和频率,写出其傅里叶级数表达式的过程D.方波的谐波成分中只含有正弦成分的各偶次谐波
周期性非正弦波的傅里叶级数展开式中,谐波的频率越高,其幅值( )。A.越大B.越小C.无法确定D.不变
任意给出几种常见的非正弦周期信号波形图,你能否确定其傅里叶级数展开式中有无恒定分量()A、不能B、能C、不确定
一个非正弦周期波可分解为无限多项谐波成分,这个分解的过程称为(),其数学基础是傅里叶级数。
所谓谐波分析,就是对一个已知()的非正弦周期信号,找出它所包含的各次谐波分量的()和(),写出其傅里叶级数表达式的过程。
周期性非正弦波的傅里叶级数展开式中,谐波的频率越高,其幅值越()A、大B、小C、无法判断
周期为丁的非正弦信号可以分解为傅里叶级数的条件为()。A、满足狄利赫利条件B、无条件C、必须平均值为零
周期信号的频谱图有何特点?其傅里叶级数三角函数展开式与复指数函数展开式的频谱有何特点?
某周期为0.02s的非正弦周期信号,分解成傅里叶级数时,角频率为300πrad/s的项称为()。A、三次谐波分量B、六次谐波分量C、基波分量D、高次谐波分量
单选题某周期为T的非正弦周期信号分解为傅里叶级数时,其三次谐波的角频率为300nrad/s,则该信号的周期T为()S。A50B0.06C0.02D不确定
单选题周期为丁的非正弦信号可以分解为傅里叶级数的条件为()。A满足狄利赫利条件B无条件C必须平均值为零
单选题某周期为0.02s的非正弦周期信号,分解成傅里叶级数时,角频率为300πrad/s的项称为()。A三次谐波分量B六次谐波分量C基波分量D高次谐波分量