现将3个相同的红球和4个相同的白球排成一列,要使红球各不相邻,则有多少种排法?A.1B.5C.10D.60
现将3个相同的红球和4个相同的白球排成一列,要使红球各不相邻,则有多少种排法?
A.1
B.5
C.10
D.60
B.5
C.10
D.60
参考解析
解析:要使红球各不相邻,则只需要把3个红球插入4个白球所形成的5个空档中即可,有
相关考题:
袋子里红球与白球的数量之比为19:13,放入若干个红球后,红球与自球的数量之比变为5:3,再放入若干个白球后,红球与白球的数量之比为13:11,已知放入的红球比白球少80个。那么原来袋子里共有多少个球?A.650B.720C.840D.960
一个袋内有100个球,其中有红球28个、绿球20个、黄球12个、蓝球20个、白球10个、黑球10个。现在从袋中任意摸球出来,如果要使摸出的球中,至少有15个球的颜色相同,问至少要摸出几个球才能保证满足上述要求?( )A.78B.77C.75D.68
袋子里红球与白球的数量之比为19:13,放入若干个红球后,红球与白球的数量之比变为5:3,再放入若干个白球后,红球与白球的数量之比为13:11,已知放入的红球比白球少80个。那么原来袋子里共有多少个球? A.650 B.720 C.840 D.960
箱子里有红、白两种玻璃球。红球是向球的3倍少2个。每次从箱子里取出7个白球、13个红球,经过若干次后,箱子里剩下6个白球,72个红球,那么,原来箱子里红球比白球多多少个?( )A.102B.104C.106D.108
箱子里有红、白两种玻璃球,红球是白球的3倍少2个。每次从箱子里取出7个白球、13个红球,经过若干次后,箱子里剩下6个白球,72个红球,那么,原来箱予里红球比白球多多少个?( )A.102B.104C.106D.108
一个口袋内有4个不同的红球,6个不同的白球.(1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?
箱子里面有红、白两种玻璃球,红球数比白球数的3倍多两个,每次从箱子里取出7个白球、15个红球。如果经过若干次以后,箱子里只剩下3个白球、53个红球,那么,箱子里原有红球比白球多多少个?A.102B.104C.106D.108
一个口袋中有7个红球3个白球,从袋中任取一球,看过颜色后是白球则放回袋中,直至取到红球,然后再取一球,假设每次取球时各个球被取到的可能性相同,求第一、第二次都取到红球的概率( )。A.7/10B.7/15C.7/20D.7/30
单选题一只盒子中有红球m个,白球10个,黑球n个,每个球除颜色外其他都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是( ).Am=4,n=6Bm=5,n=5Cm+n=5Dm+n=10
单选题口袋里装有10只外形相同的球,其中7只红球,3只白球.从口袋中任意取出2只球,则它们是一只红球、一只白球的概率等于().A21/90.B21/45C21/100D21/50