假设A公司的股票现在的市价为50元。有1股以该股票为标的资产的看涨期权,执行价格为52.08元,到期时间是6个月。6个月以后股价有两种可能,即上升33.33%,或者下降25%,无风险报酬率为每年4%。要求:(1)根据套期保值原理估计期权价值。要求:(2)如果期权市场上,每份看涨期权的价格为6.7元,是否存在套利的可能性,如果存在,应该如何套利?
假设A公司的股票现在的市价为50元。有1股以该股票为标的资产的看涨期权,执行价格为52.08元,到期时间是6个月。6个月以后股价有两种可能,即上升33.33%,或者下降25%,无风险报酬率为每年4%。
要求:(1)根据套期保值原理估计期权价值。
要求:(2)如果期权市场上,每份看涨期权的价格为6.7元,是否存在套利的可能性,如果存在,应该如何套利?
要求:(1)根据套期保值原理估计期权价值。
要求:(2)如果期权市场上,每份看涨期权的价格为6.7元,是否存在套利的可能性,如果存在,应该如何套利?
参考解析
解析:1.(1)计算6个月后股票价格:
Su=So×u=50×(1+33.33%)=66.67(元)
Sd=So×d=50×(1-25%)=37.5(元)
(2)计算6个月后多头看涨期权价值:
Cu=So-X==66.67-52.08=14.59(元)
Cd=0
(3)计算套期保值比率
2.期权价值(6.62元)与期权市场的期权价格(6.7元)不相等,存在套利空间。
套利方法:出售1股看涨期权(6.7元),借款18.38元[=37.5×0.5/(1+2%)],购买0.5股股票支出25元(=50×0.5),可获利0.08元(6.7-6.62)。
Su=So×u=50×(1+33.33%)=66.67(元)
Sd=So×d=50×(1-25%)=37.5(元)
(2)计算6个月后多头看涨期权价值:
Cu=So-X==66.67-52.08=14.59(元)
Cd=0
(3)计算套期保值比率
2.期权价值(6.62元)与期权市场的期权价格(6.7元)不相等,存在套利空间。
套利方法:出售1股看涨期权(6.7元),借款18.38元[=37.5×0.5/(1+2%)],购买0.5股股票支出25元(=50×0.5),可获利0.08元(6.7-6.62)。
相关考题:
根据材料回答8~11题:假设ABC公司的股票现在的市价为80元。有1股以该股票为标的资产的看涨期权,执行价格为85元,到期时间是6个月。6个月以后股价有两种可能:上升33.33%,或者降低25%。无风险利率为每年4%。现拟建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得6个月后该组合的价值与看涨期权相等。在该组合中,购进股票的数量为( )股。A.0.3464B.0.4346C.0.4643D.0.6434
假设某公司的股票现在的市价为60元。有1股以该股票为标的资产的看涨期权,执行价格为62元,到期时间是6个月。6个月以后股价有两种可能:上升33.33%,或者降低25%。无风险利率为每年4%,则利用复制原理确定期权价格时,下列复制组合表述正确的是( )。A.购买0.4536股的股票B.以无风险利率借入28.13元C.购买股票支出为30.85元D.以无风险利率借入30.26元
假设ABC公司的股票现在的市价为60元。有1股以该股票为标的资产的看涨期权,执行价格为62元,到期时间是6个月。6个月以后股价有两种可能:上升33.33%,或者下降25%。无风险利率为每年4%,若当前的期权价格为8元,则下列表述正确的是( )。A.投资人应以无风险利率借入22.69元购买0.5143股的股票,同时出售看涨期权B.投资人应购买此期权,同时卖空0.5143股的股票,并投资22.69元于无风险证券C.套利活动促使期权只能定价为9元D.套利活动促使期权只能定价为8元
假设甲公司股票的现行市价为20元,有1股以该股票为标的资产的看涨期权,执行价格为22.25元。到期时间为8个月,分为两期,每期4个月,每期股价有两种可能:上升25%或下降20%。无风险利率为每个月0.5%。要求:(1)计算8个月后各种可能的股票市价以及期权到期日价值;(2)按照风险中性原理计算看涨期权的现行价格。
假设C公司股票现在的市价为20元,有1股以该股票为标的资产的看涨期权,执行价格为15元,到期时间是6个月。6个月后股价有两种可能:上升25%或者降低20%,无风险报酬率为每年6%。现在打算购进适量的股票以及借入必要的款项建立一个投资组合,使得该组合6个月后的价值与购进该看涨期权相等。<1>、确定可能的到期日股票价格;<2>、根据执行价格计算确定期权到期日价值;<3>、计算套期保值比率;<4>、计算购进股票的数量和借款数额;<5>、根据上述计算结果计算期权价值;<6>、根据风险中性原理计算期权的现值(假设股票不派发红利)。
假设该公司的股票现在市价为45元。有1股以该股票为标的资产的看涨期权,执行价格为48元,到期时间是6个月。6个月以后股价有两种可能:上升33.33%,或者下降25%,年无风险报价利率为4%,则利用复制原理确定期权价格时,下列说法错误的有( )。A.股价上行时期权到期日价值12元B.套期保值比率为0.8C.购买股票支出20.57元D.以无风险利率借入14元
假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者降低30%。无风险利率为每年4%。要求:利用单期二叉树定价模型确定期权的价值。
假设某公司股票现行市价为55元。有1份以该股票为标的资产的看涨期权,执行价格为60元,到期时间是6个月。6个月以后股价有两种可能:上升42%,或者下降29%。无风险年利率为4%,则利用风险中性原理所确定的期权价值为( )元。A、7.75B、5.93C、6.26D、4.37
某公司股票目前的市价为40元,有1份以该股票为标的资产的欧式看涨期权(1份期权包含1股标的股票),执行价格为42元,到期时间为6个月。6个月以后股价有两种可能:上升20%或者下降25%,则套期保值比率为( )。A.0.33B.0.26C.0.42D.0.28
假设ABC 公司的股票现在的市价为60 元。有1 股以该股票为标的资产的看涨期权,执行价格为65 元,到期时间是6 个月。6 个月以后股价有两种可能:上升22.56%或者降低18.4%。无风险报酬率为每年4%,假设该股票不派发红利,则利用风险中性原理计算期权价值过程中涉及的下列数据,不正确的是( )。A.股价上行时期权到期日价值为8.536 元B.期望报酬率为4%C.下行概率为0.5020D.期权的现值为4.1675 元
假设ABC公司的股票现在的市价为80元。有1股以该股票为标的资产的看涨期权,执行价格为85元,到期时间6个月。6个月以后股价有两种可能:上升33.33%,或者降低25%。无风险利率为每年4%。现拟建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得6个月后该组合的价值与看涨期权相等。则下列计算结果正确的有( )。 A.在该组合中,购进股票的数量0.4643股B.在该组合中,借款的数量为27.31元C.看涨期权的价值为9.834元D.购买股票的支出为37.144元
假设ABC公司的股票现在的市价为60元。6个月以后股价有两种可能:上升33.33%,或者降低25%。有1股以该股票为标的资产的看涨期权,在利用复制原理确定其价值时,如果已知股价下行时的到期日价值为0,套期保值比率为0.6,则该期权的执行价格为( )元。A.80B.60C.59D.62
假设ABC 公司的股票现在的市价为80 元。有1 股以该股票为标的资产的看涨期权,执行价格为85 元,到期时间6 个月。6 个月以后股价有两种可能:上升33.33%,或者降低25%。无风险报酬率为每年4%。则使用套期保值原理估算出该看涨期权价值为( )元。A.21.664B.37.144C.27.31D.9.834
假设C公司股票现在的每股市价为10元,有1股以该股票为标的资产的看涨期权,执行价格为6元,到期时间为6个月。6个月后股价有两种可能:上升25%或者降低20%,无风险利率为每年4%。现在打算购进适量的股票以及借入必要的款项建立一个投资组合,使得该组合6个月后的价值与购进该看涨期权相等。要求:(1)确定可能的到期日股票价格。(2)根据执行价格计算确定期权到期日价值。(3)计算套期保值比率。(4)计算购进股票的数量和借款数额。(5)根据上述结果计算期权价值。(6)如果该看涨期权的现行价格为6.12元,请根据套利原理,构建一个投资组合进行套利,并计算获利金额。
ABC公司的股票目前的股价为10元,有1股以该股票为标的资产的欧式看涨期权,执行价格为10元,期权价格为2元,到期时间为6个月。假设年无风险利率为4%,计算1股以该股票为标的资产、执行价格为10元、到期时间为6个月的欧式看跌期权的价格;
某股票现在的市价为10元,有1股以该股票为标的资产的看涨期权,执行价格为10.7元,到期时间是6个月。6个月以后股价有两种可能:上升25%,或者下降20%。无风险报酬率为6%,则根据复制组合原理,该期权价值是()元。A、3.2B、0C、1.8D、0.89
假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者下降30%。无风险报酬率为每年4%。拟利用复制原理,建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得该组合1年后的价值与购进该看涨期权相等。 要求:期权的价值为多少?
单选题假设ABC公司的股票现在的市价为60元。6个月以后股价有两种可能:上升33.33%,或者降低25%。有1股以该股票为标的资产的看涨期权,在利用复制原理确定其价值时,如果已知股价下行时的到期日价值为0,套期保值比率为0.6,则该期权的执行价格为()元。A59B60C62D65
问答题假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者降低30%。无风险利率为每年4%。要求:利用单期二叉树定价模型确定期权的价值。
问答题假设ABC公司的股票现在的市价为30元。有1份以该股票为标的资产的看涨期权,执行价格为30.5元,到期时间是6个月。6个月以后股价有两种可能:上升35%,或者下降20%。无风险利率为每年4%。拟利用复制原理,建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得该组合6个月后的价值与购进该看涨期权相等。如果该看涨期权的现行价格为4元,请根据套利原理,构建一个投资组合进行套利。
问答题计算分析题:假设C公司股票现在的市价为20元,有1股以该股票为标的资产的看涨期权,执行价格为15元,到期时间为6个月。6个月后股价有两种可能:上升25%或者降低20%,无风险利率为每年6%。现在打算购进适量的股票以及借入必要的款项建立一个投资组合,使得该组合6个月后的价值与购进该看涨期权相等。要求:(1)确定可能的到期日股票价格;(2)根据执行价格计算确定期权到期日价值;(3)计算套期保值比率;(4)计算购进股票的数量和借款数额;(5)根据上述计算结果计算期权价值;(6)根据风险中性原理计算期权的现值(假设期权期限内标的股票不派发红利)。
单选题假设ABC公司的股票现在的市价为40元。有1股以该股票为标的资产的看涨期权,执行价格为45元,到期时间6个月。6个月以后股价有两种可能:上升20%,或者降低16.67%。无风险利率为每年8%,则上行概率为( )。A67.27%B56.37%C92.13%D73.54%
多选题假设ABC公司的股票现在的市价为80元。有1股以该股票为标的资产的看涨期权,执行价格为85元,到期时间6个月。6个月以后股价有两种可能:上升33.33%,或者降低25%。无风险报酬率为每年4%。现拟建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得6个月后该组合的价值与看涨期权相等。则下列计算结果正确的有()。A在该组合中,购进股票的数量0.4643股B在该组合中,借款的数量为27.31元C看涨期权的价值为9.834元D购买股票的支出为37.144元
问答题假设ABC公司的股票现在的市价为30元。有1份以该股票为标的资产的看涨期权,执行价格为30.5元,到期时间是6个月。6个月以后股价有两种可能:上升35%,或者下降20%。无风险利率为每年4%。拟利用复制原理,建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得该组合6个月后的价值与购进该看涨期权相等。期权的价值为多少?
单选题假设ABC公司的股票现在的市价为56.26元。有1股以该股票为标的资产的看涨期权,执行价格为62元,到期时间是6个月。6个月以后股价有两种可能:上升42.21%,或者下降29.68%。无风险利率为每年4%,则利用风险中性原理所确定的期权价值为()元。A7.78B5.93C6.26D4.37
问答题假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者下降30%。无风险利率为每年4%。要求:利用风险中性原理确定期权的价值。
问答题假设ABC公司的股票现在的市价为30元。有1份以该股票为标的资产的看涨期权,执行价格为30.5元,到期时间是6个月。6个月以后股价有两种可能:上升35%,或者下降20%。无风险利率为每年4%。拟利用复制原理,建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得该组合6个月后的价值与购进该看涨期权相等。计算利用复制原理所建组合中借款的数额为多少?