The train had left( ) Apce hurried to the railway station.A. afterB. asC. whileD. when
The train had left( ) Apce hurried to the railway station.
A. after
B. as
C. while
D. when
相关考题:
If it ( ) tomorrow, we ( ) to the Summer Palace. A、rains, will goB、won't rain, goC、doesn't rain, will go
—I always look out before crossing the street.—You are right. You can't be too______.A. nervousB. carefulC. carelessD. hurried
7、下载波士顿房价数据集,将训练集放入test_x中,则执行______语句可以获得其中的前5行数据。A.print(train_x[:, 5])B.print(train_x[:, 4])C.print(train_x[0:5])D.print(train_x[:4])
使用索引读取MNIST数据集中train_x训练集,下列语句描述正确的是_______。A.train_x[0]:取第1张图片中的数据B.train_x[2][1] :取第2张图片中的第1行C.train_x[0][1][2]:取第1张图片中的第2行的第1列D.train_x[2][1] :取第1张图片中的第2行
在MINST数据集中,访问训练集train_x的第4个样本,可以通过_______语句实现。A.train_x[4]B.train_x[3]C.train_x[0:3]D.train_x[:4]
下列哪些语句会开始模型的训练:A.LinearRegression().fit(x_train,y_train)B.lr_mod.predict(x_train)C.lasso_mod.fit(x_train,y_train)D.vote_mod.predict(x_train)
5、对手写数字数据集MNIST中的train_x训练集(60000,28,28)进行切片,下面对切片结果描述错误的是_______。 import tensorflow as tf import numpy as np mnist = tf.keras.datasets.mnist (train_x, train_y), (test_x, test_y) = mnist.load_data()A.train_x[0, :, :]:第1张图片B.train_x[0:10, :, :]:前10张图片C.train_x[:, 0:28:2, :]:对所有图片隔行采样D.train_x[0:28:2, :, :]:对所有图片隔列采样
下载波士顿房价数据集,将训练集放入test_x中,则执行______语句可以获得其中的前5行数据。A.print(train_x[:, 5])B.print(train_x[:, 4])C.print(train_x[0:5])D.print(train_x[:4])